Prime Computer, Inc.

L

DOC10083-1LA
Subroutines

Reference Guide
Volume IV

Subroutines Reference IV
Libraries and I/O

First Edition

by

Dick Frost

Updated for Rev. 22.0

by
John Breithaupt and Glenn Morrow

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 22.0 (Rev. 22.0).

Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright C) 1986 by Prime Computer, Inc. All rights reserved.

PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of
Prime Computer, Inc. DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS,
PERFORM, Prime INFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWAY,
PRIMIX, PRISAM, PST 100, PT25, PT45, PT65, PT200, PT250, PW1l53, PW200,
PW250, RINGNET, SIMPLE, 50 Series, 400, 750, 850, 2250, 2350, 2450,
2455, 2550, 2655, 2755, 4050, 4150, 6350, 6550, 9650, 9655, 9750, 9755,
9950, 9955, and 995511 are trademarks of Prime Computer, Inc.

PRINTING HISTORY

First Edition
Volume I (DOC10080-1LA) August 1986 for Revision 20.2
Volume II (DOC1l0081-1LA) August 1986 for Revision 20.2
Volume III (DOC10082-1LA) August 1986 for Revision 20.2
Volume IV (DOC10083-1LA) August 1986 for Revision 20.2
Volume V (DOC10213-1LA) August 1988 for Revision 22.0
Update 1
Volume II (UPD10081-11A) July 1987 for Revision 21.0
Volume III (UPD10082-11A) July 1987 for Revision 21.0
Volume IV (UPD10083-11A) July 1987 for Revision 21.0
Update 2
Volume II (UPD10081-12A) August 1988 for Revision 22.0
Volume III (UPD10082-12A) August 1988 for Revision 22.0
Volume IV (UPD10083-122) August 1988 for Revision 22.0
Second Edition
Volume I (DOC10080-2LA) July 1987 for Revision 21.0 .

CREDITS
Project Support: Joan Karp
Editorial: Thelma Henner

Illustration: Mingling Chang
Production: Judy Gordon

ii

J

J J

N

MO

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list:

United States Customers International
Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.

Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.

500 Old Connecticut Path
Framingham, MA 01701

iii

R

A

ABOUT THIS BOOK
PART I -- INTRODUCTION
1 OVERVIEW OF SUBROUTINES

Functions and Subroutines
Subroutine Descriptions
Subroutine Usage
Subroutine Parameters

PART II -- IOCS LIBRARY

2 INTRODUCTION TO IOCS

Organization of Part II
Parameters Used for IOCS Subroutines

3 DEVICE ASSIGNMENT

Temporary Device Assignment
Permanent Device Assignment

4 DEVICE-INDEPENDENT DRIVERS
Data Formats
5 DISK SUBROUTINES

Driver Subroutines
Obsolete Disk Subroutines

6 TERMINAL DRIVERS AND
TERMINAL/PAPER-TAPE SUBROUTINES

Overview

7 OTHER PERIPHERAL DEVICES
Line Printer Subroutines
Printer/Plotters

Card Processing Subroutines
Magnetic Tapes

Contents

ix

7-1
7-12g
7-21
7-36

10

11

12

13

14

15

16

4 J

PART III -- SMLC/AMLC SUBROUTINES
SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS
Synchronous Controllers 8-2
Asynchronous Controllers 8-20
PART IV —-- APPLICATION LIBRARY

INTRODUCTION TO APPLICATION LIBRARY

General Description 9-1
How to Use Part IV 9-2
Format Summary 9-2
Naming Conventions 9-4
Library Implementation Policies 9-5 ‘
String Manipulation Routines 9-6
User Query Routines 9-17
File System Routines 9-17
SYSCOM>ASKEYS 9-9
STRING ROUTINES

Summary of String Manipulation

Routines 10-1

USER QUERY ROUTINES
Summary of User Query Routines 11-1
SYSTEM INFORMATION ROUTINES

Summary of System Information

Routines 12-1
RANDOMIZING ROUTINES ‘\
!

Summary of Randomizing Routines 13-1

CONVERSION ROUTINES

Summary of Conversion Routines 14-1
FILE SYSTEM ROUTINES

Summary of File System Routines 15-1
PARSING ROUTINE

Parsing Routine 16-1

J I

vi

M

MO

17

18

PART V -- SORT LIBRARIES AND
FORTRAN MATRIX LIBRARY

SORT LIBRARIES

General Overview

Sort Subroutine Libraries
VSRTLI (V-mode) Subroutines
Cooperating Sort Subroutines
Cooperating Merge Subroutines
SRTLIB (R-mode) Subroutines
MSORTS and VMSORT Subroutines

FORTRAN MATRIX LIBRARY (MATHLB)

Subroutine Conventions

APPENDIXES
ERROR HANDLING

Introduction
Error Codes
The Error-handling Routine ERRPRS$

ERROR HANDLING FOR I/O SUBROUTINES

Introduction
Subroutines for Error Handling

SVC INFORMATION

Supervisor Call Instructions
Called by PRIMOS Subroutines
SVC Interface for I/0 Calls
SVC Interface Considerations
Operating System Response
to an SVC Instruction

17-1
17-1
17-9
17-20
17-32
17-39
17-45

18-3

[

O(PO
)

c-2

OBSOLETE INDICATION AND CONTROL SUBROUTINES

Overview

OTHER OBSOLETE SUBROUTINES

DATA TYPE EQUIVALENTS

INDEX OF SUBROUTINES BY FUNCTION

INDEX OF SUBROUTINES BY NAME

INDEX TO VOLUME IV

vii

D

N

About
This Book

The Subroutines Reference series gives a systematic description of the
standard Prime subroutines and subroutine libraries. Each standard
subroutine library is a file containing subroutines that perform a
variety of related programming tasks. Whenever these tasks are to be
performed, programmers can use the subroutines in the standard
libraries instead of writing their own subroutines. Programmers need
to write subroutines only to perform specialized tasks for which no
standard subroutines exist.

OVERVIEW OF THIS SERIES

The Subroutines Reference consists of five volumes. A brief summary of
the contents of each volume follows.

Volume I

Volume I is an introduction to the entire Subroutines Reference series.
It describes the nature and functions of Prime’s standard subroutines
and subroutine libraries. It explains how subroutines can be called
from programs written in Prime’s programming languages: C, COBOL 74,
FORTRAN IV, FORTRAN 77, Pascal, PL/I, BASIC V/M, and PMA.

ix

Volume II

Volume II describes subroutines that deal with the access to and
management of file system entities, the manipulation of EPFs in the
execution environment, system search rules, and the use of a number of
command environment functions. Three chapters describe subroutines
related to the file system, one chapter describes system search rules,
and one chapter each is devoted to subroutines related to EPF
management and to the command environment.

Volume III

Volume III describes system subroutines. The subroutines covered in
this volume are the general system calls to the operating system and
standard system library. This excludes file and EPF manipulation,
which are described in Volume II. Volume III also includes System
Information and Metering (SIM) routines.

Volume IV

Volume IV presents several mature libraries: the Input/Output Control
System (I0CS) libraries and other I/0-related subroutines, the
Application libraries, the SORT libraries, and MATHLB.

IOCS provides device-independent I/0. The chapters on IOCS provide
descriptions of the device-independent subroutines plus those
device-dependent subroutines simplified by IOCS. Another section
provides descriptions of the synchronous and asynchronous device-driver
subroutines.

Sections on the Application Library, the Sort Libraries, and the
FORTRAN Matrix library provide descriptions of other program
development subroutines especially useful for FORTRAN programs.

4 J

J I

Volume V

Volume V describes the event synchronization feature of PRIMOS G@ and
its use by two PRIMOS facilities: timers and the InterServer
Communications (ISC) facility for message exchange between processes.
Volume V is divided into three parts.

Part 1 provides a general overview of event synchronization.

Part 2 describes in detail how to create, destroy, and retrieve
information about event synchronizers and event groups. It also
describes how timers and the ISC facility use event synchronizers and
event groups to synchronize user processes.

Part 3 describes in detail how to create, use, destroy, and retrieve
information about timers. Timers make time-dependent process
synchronization possible.

Part 4 describes in detail the ISC facility, which makes it possible
for processes that are running simultaneously to exchange messages.
These processes may be running on the same system or on two different
systems connected by PRIMENET. Message exchange 1is coordinated by
using event synchronizers.

SPECIFICS OF THIS VOLUME

Volume IV contains descriptions of low-level libraries that provide
many useful routines. It has five parts:

I Introduction

II IOCS Library

III SMLC/AMLC Subroutines

IV Application Library

\Y Sort Libraries and FORTRAN Matrix Library

Part I consists of a single chapter that gives an overview of
subroutines and libraries.

Chapter 1 summarizes the calling conventions for Prime subroutines and
explains the format of the subroutine descriptions in this volume. It
summarizes the parameter and returned-value data types used in the
descriptions. It explains how to set bits in arguments, how to use
keys, and how to interpret error codes. It discusses subroutine
libraries and addressing modes as an introduction to the Loading and
Linking Information section for each subroutine description.

Part II presents the IOCS (Input/Output Control System) Library, along
with other subroutines that perform I/O. BAmong these 1libraries, for
example, is a basic I/0 procedure for accessing any peripheral device
(terminal, printer, tape, disk, card-reader). Most of the

x1i

chores done by these subroutines are also done by the friendlier File
Management subroutines described in Volume II. Nevertheless, these
subroutines allow the programmer to be device-independent in performing
I/0. They also allow the System Administrator to change device
assignments by altering utility tables on the master disk.

Part IIT presents the SMLC/AMLC subroutines —-- subroutines used for
making assignments to the Synchronous Multiline Controller(s) and the
Asynchronous Multiline Controller(s). Accompanying control Dblock

configurations are also described in this section.

Part IV presents the Application Library -- both the R-mode APPLIB and
the V-mode VAPPLB. This mature user-oriented library provides a set of
service routines that are designed to perform as functions but may also
be called directly as subroutines. The seven categories of functions
each receive a chapter for description. For example, in the chapter on
String Manipulation Routines, you will find a function that converts an
ASCII string to a binary string and then returns a Boolean value to
indicate success or failure. Many of these functions were created to
overcome the limited string manipulation capabilities of FTN; more
recent languages often have these functions embedded in their
instruction set.

Part V presents the Sort Libraries and the FORTRAN Matrix Libraries.
Among these libraries, for example, is a subroutine to perform a bubble
sort, and another for a shell sort. Many of these subroutines are
better suited for system use. The programmer will often find the same
functions embedded in the high level programming language being used.

The appendixes provide information about error handling, error handling
for I/0 subroutines, SVC, obsolete subroutines, and data type
equivalents.

Three indexes enable the reader to find information quickly. These
are:

e The Index of Subroutines by Function, a list of subroutines grouped
by the general types of function that they perform. Use this index
to find out which subroutines perform a particular function, such
as controlling access to the file system.

e The Index of Subroutines, an alphabetical 1list of subroutines
giving the volume, chapter, and page number of each subroutine.
Use this index to locate the description of a particular subroutine
in the Subroutines Reference.

e The Volume Index, a list of the topics treated in this volume. Use
this index to find out where in this volume a particular topic,
process, or term is described.

xii

4 J

J J

RN

5

SUGGESTED REFERENCES

The PRIMOS User’s Guide (DOC4130-5LA) contains information on system
use, directory structure, the condition mechanism, CPL files, ACLs,
global variables, and how to load and execute files with external
subroutines.

The Programmer’s Guide to BIND and EPFs (DOC8691-1LA) shows application
programmers how to use the executable program format environment.

The Advanced Programmer’s Guide, the companion to the Subroutines
Reference series, consists of four volumes:

Advanced Programmer’s Guide, Volume 0: Introduction and Error Codes
(DOC10066-1LA)

Advanced Programmer’s Guide, Volume I: BIND and EPFs
(DOC10055-1La)

Advanced Programmer’s Guide, Volume II: File System
(DOC10056-2LA)

Advanced Programmer’s Guide, Volume III: Command Environment
(DOC10057-114)

These volumes provide strategies for the use of subroutines by system
programmers and application programmers. In addition to explanations
for each error code message, the manual provides the most complete
information on the use of EPFs, of file system subroutines, and of
command environments.

The following related Prime publications are also available.

Operator’s Guide to System Commands (DOC9304-3LA)

System Administrator’s Guide, Volume I: System Configuration
(DOC10131-1LA)

System Administrator’s Guide, Volume II: Communication Lines and
Controllers (DOC10132-1LA)

System Administrator’s Guide, Volume III: System Access and
Security (DOC10133-1LA)

System Architecture Reference Guide (DOC9473-2LA)

xiii

PRIME DOCUMENTATION CONVENTIONS

Subroutine descriptions use the conventions shown below. Examples
illustrate use of these conventions.

Convention Explanation Example
UPPERCASE In subroutine descriptions, FIXED BIN

words in uppercase indicate
actual names of commands,
options, statements, data
types, and keywords.

lowercase In subroutine descriptions, key, filename
words in lowercase indicate
variables for which you must
substitute a suitable value.

Parentheses In call statements, CALL TIMDAT (array, n)
() parentheses must be
entered exactly as shown.

Note

FORTRAN requires a colon (:) to indicate that octal notation
follows.

Changes made to these pages since the last printing are identified by
vertical bars in the margins. Each new routine in this package is
marked with a bar beside the routine name, at the description’s
heading.

xiv

J

5

PART |

INTRODUCTION

N

1
Overview of
Subroutines

A subroutine is a module of c¢ode that can be called from another

module. It 1is wuseful for performing operations that cannot be
performed by the calling 1language, or for performing standard
operations faster. Users can write their own subroutines to supply
customized or repetitive operations. However, this guide discusses

only standard subroutines provided with the PRIMOSQ@® operating system
or in standard libraries.

This chapter summarizes the calling conventions for Prime subroutines
and explains the format of the subroutine descriptions in this volume.
It assumes that readers know a high-level 1language or Prime Macro
Assembler (PMA), and that they are familiar with the concept of
external subroutines. For more information on calling subroutines from
Prime languages, see the chapter on your own language in Volume I.

FUNCTIONS AND SUBROUTINES

In this guide, a function is a call that returns a value. You call a
function by using it in an expression; the function’s returned value
can then be assigned to a variable or used in other operatiors within
the expression. Here, the value returned by DELESA is assigned to the
variable VALUELl:

VALUEl = DELES$A (argl, arg2):

1-1 First Edition

SUBROUTINES, VOLUME IV

A subroutine returns values only through its arguments. It is called
this way:

CALL GVS$GET(axgl, arg2, arg3, argé):

However, the word subroutine is also used as the collective term for
both of these modules.

SUBROQUTINE DESCRIPTIONS

In this guide, each description of a subroutine contains the following
sections:

e Purpose. A brief description of what the subroutine does.

e Usage. The format of a subroutine declaration and a subroutine
call, using either PL/I language elements (for subroutines in
V-mode, etc.) or FCRTRAN language elements (for subroutines
solely in R-mode). For more information, see the section
SUBROUTINE USAGE later in this chapter.

Note

Certain subroutines in this volume are designed to aid
the FORTRAN programmer in particular. Even though they
exist in modes other than R-mode, they receive FORTRAN
language elements in their Usage.

e Parameters. Information about the arguments the subroutine
expects and the values it returns. For further information, see
the section SUBROUTINE PARAMETERS later in this chapter.

e Discussion. Additional information about the subroutine and

examples of its use. Not all subroutine descriptions have this
section.

e Loading and Linking Information. Information about what
libraries must be loaded during the linking and loading process.
See the section Libraries and Addressing Modes later in this
chapter for a brief discussion of modes.

Figure 1-1 shows an example of a subroutine description. The
subroutine CTIMSA is in chapter 12 of this volume. Like the other
subroutines in the Application libraries, CTIM$A is most suitably used
in its function form.

First Edition 1-2

J)

J

M)

OVERVIEW OF SUBROUTINES

CTIMS$SA

Purpose

CTIMSA is a double precision function that returns CPU time elapsed
since login, in seconds as the function value, and as centiseconds in
the cputim argument.

Usage

INTEGER*4 cputim
REAL*8 rt_val

rt_val = CTIMSA (cputim)
(orx)
CALL CTIMSA (cputim)
Parameters
cputim

OUTPUT. CPU time in centiseconds.

Discussion

The function value will be CPU time elapsed since 1login, in seconds.
This value may be received as REAL*8.

Loading and Linking Information

APPLIB — R-mode
NVAPPLB —— V-mode
VAPPLB - V-mode (unshared)

A Subroutine Description
Figure 1-1

1-3 First Edition

SUBROUTINES, VOLUME IV

SUBROUTINE USAGE

The Usage section of each subroutine description includes two items of
information:

1. How to declare the subroutine in a program.
2. How to invoke it in a program.

The notation used is that of either the PL/I language or the FORTRAN
language. If you do not use these languages, the explanation of the
relevant syntax and data types descriptions in this section and the
SUBROUTINE PARAMETERS section should enable you to call these
subroutines from other languages. For further information see the
chapter in Volume I that describes your language interface.

Subroutine Declarations with PL/I Elements

The following example shows a subroutine declaration in PL/I:

DCL CNIN$ ENTRY (CHARACTER(*), FIXED BIN, FIXED BIN);

DCL is the short form of DECLARE. The DECLARE statement is used to
declare all data types, including subroutines and functions. CNINS$ is
the subroutine name. ENTRY specifies that the item being declared is a
subprogram.

The items in parentheses are the parameters of the subroutine.

Subroutine Calls with PL/I Elements

The following example shows a call to the subroutine declared above:

CALL CNINS (buffer, char_count, actual_count):;

PL/I does not distinguish between uppercase and lowercase characters.
In the Usage section of a subroutine description, lower case letters
indicate the items that must be supplied by the user, both arguments
(actual parameters, as opposed to formal parameters) and data items.
These are described more fully in the Parameters section.

First Edition 1-4

J)

J'Jd

M)

N

OVERVIEW OF SUBROUTINES

The CALL statement above invokes the subroutine CNINS. The arguments
in parentheses correspond to the parameters in the subroutine
declaration. The variables or constants used as arguments in a call to
the subroutine must match the data types of the parameters in the
declaration. Here, the variable buffer must be a character string,
while char_count and actual_count must be integers. A subroutine that
has no parameters is invoked simply by giving the CALL keyword and the
name of the subroutine:

CALL TONL;

Subroutine Declarations and Calls with FORTRAN Elements

The FORTRAN language requires uppercase. It does not use a DCL line

for subroutines. It requires declaration of the data types for those
variables to be passed in a subroutine, without any additional sizing
of parameters as for PL/I. Variable declarations are given at the
beginning of the program, indented eight spaces -- as are all

statements (except comment lines, which are marked by a "C", flush
left). Variables given here are formal variables; you may choose your
own names. The example for the subroutine CNIN$ now takes this form
for FORTRAN:

INTEGER*2 CH_CNT
C FTN requires uppercase and expects variables of 6 characters
C or less; thus CH_CNT instead of char_count as given in PL/I
INTEGER*2 BUFFER(1)
C The (1) suggests an array; you must substitute a value size
Cc practical for your application, for example BUFFER(80)
INTEGER*2 AC_CNT
C (Later, after you assign CH_CNT a value):...
CALL CNINS (BUFFER, CH_CNT, AC_CNT)

Function Declarations with PL/I Elements

The following example shows a function declaration in PL/I:

DCL PWCHK$ ENTRY(FIXED BIN, CHAR(*) VAR) RETURNS (BIT(1l)):

The only difference between a function and a subroutine declaration is
at the end of the DECLARE statement. The function declaration contains
the keyword RETURNS, followed by a returns descriptor specifying the
data type of the value returned by the function. In this case, it is a
logical (Boolean) value.

1-5 First Edition

SUBROUTINES, VOLUME IV

Function Calls with PL/I Elements

A function 1is invoked when its name is used as an expression on the
right-hand side of an assignment statement. The following example
shows an invocation of the function declared above:

password_ok PWCHKS (key, password):

The equal sign = is the assignment operator. password ok is a logical
(Boolean) variable that is assigned the value returned by the call to
PWCHKS . key and password represent integer and character-string
values, respectively.

Functions Without Parameters: A function that has no parameters is
invoked with an empty argument list. The DATES$ subroutine is declared
as follows:

DCL DATES$ ENTRY RETURNS (FIXED BIN(31));:

Its invocation looks like this:

fs_date = DATES():

Note

Functions called from FTN programs require parameters.

Function Declarations/Calls with FORTRAN Elements

FORTRAN has no DCL line to declare a function. An extra variable must
be declared for a function -- the variable that is to hold the value
returned by the function. Otherwise, preparation for a function call
is exactly as for a subroutine call.

A note of warning: certain functions in this volume return FORTRAN
logical values, sized to INTEGER*2 (a 16-bit halfword) instead of a
single bit, as for PL/I. These functions are designed mainly as tools
for FORTRAN programs. See the Application Library (chapters 9 - 16)
for examples. Other languages may use them, but they must adjust the
size of their returned logical value to the size of a halfword, instead
of a (more-typical) single bit.

First Edition 1-6

4 J

3

OVERVIEW OF SUBROUTINES

The subroutine call in FORTRAN uses the same form as in PL/I. The
following example shows the declaration and call of RSTR$A, a FORTRAN
logical function in chapter 10 of this volume:

INTEGER*2 STRING (1)

C (a string of characters to be rotated)
INTEGER*2 LENGTH, COUNT

C (LENGTH of string and COUNT of positions to rotate)
LOGICAL LOG

C (To hold the LOGical value returned by the function)
LOG = RSTRSA(STRING, LENGTH, COUNT)

SUBROUTINE PARAMETERS

Subroutines usually expect one or more arguments from the calling
program. These arguments must be of the data type specified in the
parameter list of the DECLARE statement, and must be passed in the
order expected. All standard Prime subroutines are written in FORTRAN,
PMA, or a system version of PL/I. Volume I discusses how to translate
the data types expected by these languages into other Prime languages.
A chart summarizing data type equivalents for all Prime languages is in
Appendix F.

You must provide the number of arguments expected by the subroutine.
If too few arguments are passed, execution causes an error message such
as POINTER FAULT or ILLEGAL SEGNO. If too many arguments are passed,
the subroutine ignores the extra arguments, but will probably perform
incorrectly. A small number of subroutines, such as IOA$, accept
varying numbers of arguments.

The Usage section of a subroutine description gives the data types of
the parameters. The Parameters section explains what information these
parameters contain and what they are used for. Each parameter
description in this section begins with a word in uppercase that
indicates whether the parameter is used for input or output:

e INPUT means that the parameter is used only for input, and that
its value is not changed by the subroutine.

e OUTPUT means that the parameter is used only for output. You do
not have to initialize it before you call the subroutine.

e INPUT/OUTPUT means that the parameter is used for both input and
output. The argument you pass to it is changed by the
subroutine.

You will note that a returned value from a function call receives no
description in the Parameters section, since it 1is not truly a
parameter of the subroutine. However, the Usage section defines the
data type of the returned value.

1-7 First Edition

SUBROUTINES, VOLUME IV

Parameter and Returned-Value Data Types with PL/I

A PL/I parameter specification consists simply of a list of the data
types of the parameters. The data types you will encounter, both in
the parameter list and in the RETURNS part of a function declaration,

are the following:

CHAR (n)

CHAR (*)

CHAR(n) VAR

CHAR(*) VAR

FIXED BIN

FIXED BIN(31)

(n) FIXED BIN

FLOAT BIN

FLOAT BIN(47)

BIT(1)

BIT (n)

First Edition

Also specified as CHARACTER (n), CHARACTER (n)
NONVARYING. Specifies a character string or array
of length n. A CHAR(n) string is stored as a
byte-aligned string, one character per byte. (A&
byte is 8 bits.)

Also CHARACTER (*), CHARACTER (*) NONVARYING.
Specifies a character string or array whose length
is unknown at the time of declaration. A CHAR(n)

string is stored as a byte-aligned string, one
character per byte.

Also CHARACTER(n) VARYING. Specifies a character
string or array whose length can be a maximum of n
characters. The first 2 bytes (one halfword) of
storage for a CHAR(n) VAR string contain an integer
that specifies the string length: these are
followed by the string, one character per byte.

Also CHARACTER(*) VARYING. Specifies a character
string or array whose length is unknown at the time
of declaration. The first 2 bytes (one halfword)
of storage for a CHAR(*) VAR string contain an
integer that specifies . the string length; these
are followed by the string, one character per byte.

Also FIXED BINARY, BIN, FIXED BIN(15). Specifies a
16-bit (halfword) signed integer.

Specifies a 32-bit signed integer.

An integer array of n elements. See below for more
information about arrays.

Also FLOAT BIN(23), FLOAT. Specifies a 32-bit
(one-word) floating-point number.

Specifies a 64-bit (double-word) floating-point
number.

Specifies a logical (Boolean) value. A bit value
of 1 means TRUE; a value of 0 means FALSE.

Specifies a bit string of length n. BIT(n) ALIGNED

means that the bit string is to be aligned on a
halfword boundary.

1-8

J)

J

)

OVERVIEW OF SUBROUTINES

POINTER Also PTR. Specifies a POINTER data type. A
pointer is stored in three halfwords (48 bits). 1If
the pointer will point only to halfword-aligned
data, it may occupy two halfwords (32 bits). The
item to which the pointer points is declared with
the BASED attribute (for instance, BASED FIXED
BIN) .

POINTER OPTIONS (SHORT)
Same as POINTER except that it always occupies only
two halfwords and can only point to
halfword-aligned data.

Note

When used as a parameter, POINTER can be
used interchangeably with POINTER OPTIONS
(SHORT) .

When used as a returned function value,
POINTER OPTIONS (SHORT) can be used in any
high-level language except Pascal or 64V
mode C, which require returned pointers to
be three halfwords; in these cases,
POINTER must be used. C in 32IX mode
accepts only halfword-aligned, two-halfword
pointers, and therefore requires the use of
POINTER OPTIONS (SHORT) .

Sometimes an argument is defined as an array or a structure. An array
declaration looks like this:

DCL ITEMS(10) FIXED BIN;

Here, ITEMS is a ten-element array of integers. The keywords FIXED
BIN, however, can be replaced by any data type. By default, arrays are
indexed starting with the subscript 1; the first integer in this array
is ITEMS(1).

An array with a starting subscript other than 1 is declared with a
range specification:

DCL WORD (0:1023) BASED FIXED BIN;

WORD is an array indexed from 0 to 1023, and its elements are
referenced by POINTER variables.

A structure is equivalent to a record in COBOL or Pascal. A structure
declaration looks like this:

1-9 First Edition

SUBROUTINES, VOLUME IV

DCL 1 FS_DATE,
2 YEAR BIT(7),
2 MONTH BIT(4),
2 DAY BIT(5),
2 QUADSECONDS FIXED BIN(15);

The numbers 1 and 2 indicate the relative level numbers of the items in
the structure. The name of the structure itself is always declared at
level 1. The level number is followed by the name of the data item and
its data type. In this example, the structure occupies a total of 32
bits. (Remember that a FIXED BIN(15) value occupies 16 bits of
storage.)

Since no names are given to data items in parameter lists, the array
declared above as ITEMS would be declared simply as (10) FIXED BIN.
Similarly, the structure FS_DATE would be listed as

(..., 1, 2 BIT(7), 2 BIT(4), 2 BIT(5), 2 FIXED BIN(15), ...)

Data Types For FORTRAN

The Usage sections with FORTRAN employ FTN (not F77) elements. The
data types you will encounter there are the following:

COMPLEX Specifies a 64-bit element to hold a complex
number, defined as two 32-bit (REAL*4) entities,
the first for its real and the second for its
imaginary part.

INTEGER*2 Also INTEGER. Specifies a 16-bit (halfword) signed
integer. Bit 1 = sign bit.

INTEGER*4 Specifies a 32-bit signed integer. Bit 1 = sign
bit.

LOGICAL Specifies a logical (Boolean) value. Within a

16-bit halfword: the first 15 bits must be 0, the
16th bit indicates .FALSE. with 0 and .TRUE. with

1.

REAL*4 Also REAL. Specifies a 32-bit signed
floating-point number. Bit 1 = sign bit. Bits
2-24 = mantissa. Bits 25-32 = exponent.

REAL*8 Also DOUBLE PRECISION. Specifies a 64-bit signed
floating-point number. Bit 1 = sign bit. Bits

2-48 = mantissa. Bits 49-64 = exponent.

First Edition 1-10

J J

)

OVERVIEW OF SUBROUTINES

Data Type Variants For FORTRAN

Other declarations in the Usage section suggest the elements for which
FTN has no data type:

BUFFER(1) Given the data type of INTEGER*2, this shorthand
declaration for an array suggests a character
string or array whose length is unknown at the time
of declaration (an equivalent to CHAR(*) in PL/I).
The user must DIMENSION the array with an adequate
size. If the size is known to be (n), then the
variable declaration is given as BUFFER(n).

LOC (variable) Specifies the equivalent of a POINTER data type.
This built-in FORTRAN function automatically
provides the prerequisite three halfwords (48 bits)
for the pointer.

Optional Parameters

On Prime computers, some subroutines and functions are designed so that
one or more of their parameters, input or output, can be omitted.
Candidates for omission are always the last n parameters. Thus, if a
subroutine has a full complement of three parameters, it may be
designed so that the last one or the last two can be omitted; the
subroutine cannot be designed so that only the second parameter can be
omitted. The first parameter can never be omitted.

In the Usage section of a subroutine description, any optional
parameters are enclosed in square brackets, as in the following
declaration and CALL statement:

DCL CH$FX1 ENTRY (CHAR (*) VAR, FIXED BIN (15)
[, FIXED BIN (15)]);

CALL CHSFX1 (string to_convert, result
[, nonstandard_codel):

In some cases, parameters can be omitted because they are not needed
under the circumstances of the particular call. In other cases, when
the parameter is of type INPUT, the subroutine will detect the missing
parameter and will assume some value for it. For example, C1INS,
described in Volume III, Chapter 3, can be called with one, two or
three arguments:

CALL C1lIN$ (char):
CALL C1lIN$ (char, echo_flag):
CALL ClIN$ (char, echo_flag, term_flag):

1-11 First Edition

SUBROUTINES, VOLUME IV

If echo_flag is missing, the subroutine acts as if it had been supplied
with a value of "true". If term flag is missing, the subroutine acts
as if it had been supplied with a value of "false".

In still other cases, the subroutine changes its behavior depending on

the presence of the parameter. For example, the subroutine CHS$FX1
(described in Volume III, Chapter 6), whose Usage section is shown
above, uses its third argument to return an error code. If the code

argument is omitted and an error occurs, the routine signals a
condition instead.

Most of the routines in the Subroutines Reference Guide have no
optional parameters.

Optional Returned Values

In the architecture of Prime computers, a subroutine that was designed
as a function can be called as a subroutine using the CALL statement.
Frequently this makes no sense. The statement

CALL SIN(45);

does nothing wuseful; the value that the SIN function returns is lost.
But, with functions that change some of their parameters as well as
return a value, the returned value can be useful in some contexts and
not of interest in other contexts. Consider CLS$SGET, described in
Volume III, Chapter 3 of the Subroutines Reference Guide. It is a
function that reads a line from the command device and, in addition,
returns a flag that indicates whether a command input file is active.
Most programs do not need to know whether a command input file is
active. They would call CLS$GET as a subroutine:

CALL CLSGET (BUFFER, 80, CODE);

A program that was interested in command input files, however, would
call CL$GET as a function:

COMISW = CLSGET (BUFFER, 80, CODE);

Note
In PL/I and Pascal, a given subroutine may not be used both as
a subroutine and as a function within a single source module.

The Usage section of the subroutine descriptions gives both the

First Edition 1-12

) J

J

39

OVERVIEW OF SUBROUTINES

function invocation and the subroutine invocation for
subroutines that are likely to be called in both ways.

How to Set Bits in Argquments

Sometimes a subroutine expects an argument that consists of a number of
bits that must be set on or off.

A data item is stored in a computer as a collection of bits, which can
each have one of two values, off or on. On Prime computers, off is
arbitrarily equated to 0 or false, and on is equated to 1 or true.
(This is not the same as the FORTRAN values .FALSE. and .TRUE., which
are the logical data type.) When bits are stored as part of a group,
the position of the bit gives it another value in addition to 1 or 0.
Its position equates it to a power of 2. Consider an argument that
contained only two bits, represented in Figure 1-2.

Bit 1 Bit2

2441 2440

Values of Bit Positions -- Two Bits
Figure 1-2

The low-order bit would be in the position of 2 to the 0 power, and its
value, if ON, would be 1. The high-order bit would be in the position
of 2 to the first power, and its value, if ON, would be 2. (If OFF,
the value of a bit is always 0.) By convention, the low-order bit is
called the rightmost bit and the high-order bit is called the leftmost
bit.

In an argument containing 16 bits, choose the bits that you want to set
ON, compute their value by position, and add these values. The
resulting decimal value is what vyou should assign to the subroutine
argument for the options you want. You can pass an integer as an
argument that is declared as BIT(n) ALIGNED. The subroutine interprets
the integer as a bit string. For example, if you want to set the
sixteenth and the seventh bit, compute 2 to the 0 power plus 2 to the
ninth power, which amounts to 1 plus 512, or 513. Figure 1-3
illustrates values of bit positions in a 16-bit argument.

1-13 First Edition

SUBROUTINES, VOLUME IV

Bit 1 Bit7 Bit 16

2++15 2+*9 2++0

Values of Bits in a 1l6-bit Argument
Figure 1-3

Key Names as Arguments

In calls to many subroutines, data names known as keys can be wused to
represent numeric arguments. The subroutine description explains which

key to use. Numeric values are associated with these keys in the UFD
named SYSCOM. The keys in SYSCOM are listed in Volume I. Each
language has its own files of keys. The chapters on individual

languages in Volume I explain how to insert these files into your
program.

Keys are of the form x$ where x is either K or A and yyyy is any
combination of letters. Keys that begin with K concern the file
system; those that begin with A concern applications library routines;
those that begin with E are error codes. Examples are:

K$CURR

ASDEC
For example, in the subroutine call

CALL GPATHS$ (KSUNIT..... other arguments...):

the key KS$SUNIT represents the value 1.

For more information about keys, see Volume I.

Standard Error Codes

Many subroutines include as an argument a standard error code, which is
similar to a key. The error code corresponds to an error message that
the subroutine can return to indicate that the call to the subroutine
succeeded or failed, or to report some other condition worth noting.

First Edition 1-14

) J

J) J

)

OVERVIEW OF SUBROUTINES

Standard error codes are of the form E$xxxx, where xxxx 1is any
combination of letters. For example, the error code

ESDVIU

corresponds to the error message Device in Use.

The standard error codes are defined in the UFD named SYSCOM. Like a
key file, the error code file for a particular language must be
inserted in the program that calls the subroutine. Appendix A in this
volume gives an overview of the standard error codes plus a pathname to
the online 1list. A copy of the listing, current for Revision 20.2 of
Primos, is given in Volume I. For an explanation of each standard
error code, see Volume 0 of the Advanced Programmer’s Guide.

Libraries and Addressing Modes

The Subroutines Reference Guide 1is organized to give a systematic
description of subroutine libraries -- sets of routines, all broadly
dealing with the same subject, grouped together into one file. There
is a separate library for each of these subjects.

Prime computers offer several addressing modes to provide software

compatibility to the user. (For a discussion of addressing modes, see
the System Architecture Reference Guide.) To maintain this
compatibility, a given subroutine library will normally exist in three
general versions: R-mode, V-mode, and V-mode (unshared). (See Volume

I for a discussion of shared and unshared libraries.)

A program is compiled in one of the segmented modes (V-mode or I-mode)
or in the older R-mode. If the program is compiled in one of the
segmented modes, it may call 1library routines written in any of the
segmented modes. A single set of libraries is provided for all three
modes. If the program is compiled in either V-mode or I-mode, it
requires a V-mode version of a library (which services both V-mode and
I-mode programs) . If the program is compiled in R-mode, the program
must use the R-mode version of that library.

Every routine description contains a section entitled Loading and
Linking Information. It specifies the name of the library to use for
that subroutine, depending upon the compilation mode of your program.
During your BIND, SEG, or LOAD Session, you satisfy the subroutine
references by providing a LI (for Library) command followed by the name
of the library (in the appropriate mode) holding your subroutine(s).
Several LI commands may be necessary. A final "LI", without a library
specified. thereafter, provides the system libraries that complete the
linking or loading session. See Volume I for further information.

1-15 First Edition

‘j /‘ -

PART I

IOCS LIBRARY

M)

2
Introduction
to IOCS

ORGANIZATION OF PART II

IOCS (the Input/Output Control System) is a group of subroutines that
perform input/output between the Prime computer and the disks,
terminals, and other peripheral devices on the system.

These subroutines are very powerful, but you are urged to use the file
system subroutines described in Volume II for your file I/0O operations.

While these IOCS routines certainly can do the job, IOCS allows a
maximum of 127 default PRIMOS file units per user, and each of these is
assigned to a logical unit from 1 to 141. To make file unit
assignments greater than 127, you must map each to a logical unit
within the range 1-141, using a call to ATTDEV. But that is your
limit. If you are wusing EPFs that allow suspended processes at
multiple command levels, you may accidentally run out of Primos file
units or FORTRAN logical wunits. On the other hand, the file system
subroutines in Volume II do not require logical units. Furthermore,
they draw on a pool of 32761 PRIMOS file units per user, and the system
dynamically allocates and frees them for you.

If you need to exercise the control that IOCS gives you, then have a
careful strategy for file unit allocation, knowing that only the first
127 file units are handled by default. Use calls to IOCSSF and IOCSS$G
to obtain a logical unit (within the range 1-141). Finally, use a call
to ATTDEV to map that logical unit to an available file unit.

2-1 First Edition

SUBROUTINES, VOLUME IV

Generally, IOCS subroutines can be grouped into three levels:

Level 1 Device-independent drivers are routines that read
and write ASCII or binary data and perform control
functions such as opening a file.

Level 2 Device-dependent drivers issue the correct format
for a particular device, but allow the data to be
read later by device-independent drivers.

Level 3 The lowest level of IOCS functions are routines that
perform raw data transfers.

The chapters in Part II are organized in the following manner:

Chapter 2 Device, unit, and argument definitions and tables
for use with following chapters

Chapter 3 Changing device assignments

Chapter 4 Device-independent driver subroutines (which call
the device-dependent routines in the following
chapters, depending on the device specified)

Chapter 5 Disk (non-file system) subroutines

Chapter 6 Subroutines for the user terminal and paper tape
(Many subroutines may be used for both peripherals.)

Chapter 7 Subroutines for other peripheral devices (printers,
plotters, card processors, and magnetic tape)

The level-1] device drivers are presented in Chapter 4. Routines of
levels 2 and 3 are grouped in the following chapters by device type
rather than by level of the subroutine.

Table 2-1 shows the majority of IOCS routines discussed in Chapter 4
through Chapter 7. It shows the relationship of level-1
(device-independent) drivers to the others. Each column of this table
represents an I/0 function, and each row a certain physical device.
All drivers in a single column are designed to be compatible in
internal data format.

Tables 2-2 and 2-3 show the physical and logical device assignments,
for use in changing device assignments as discussed in Chapter 3.

Figure 2-1 shows all the device-dependent drivers supported by Prime.

First Edition 2-2

J J

M

INTRODUCTION TO IOCS

Table 2-1

Device-dependent Driver Selected by
Each Independent Driver According to Device

Device-Independent Drivers

RDASC WRASC RDBIN WRBIN CONTRL

Device Dependent Drivers
User terminal I$AAQ1(6) * OS$AA01(1) ISBAO1(2) O$BAO1 (2) C$A01(2)

Input command
stream ISAAL12 (1)

Paper-tape
reader ISAPO02(5) ISBP02(2) C$P02(5)

Paper-tape punch OS$AP02 (5) 0$BP02(2)
MPC card reader ISAC03(3) O$AC03(3)

Serial line
printer OS$ALO04 (3)

9-track mag.
tape ISAMOS (4) O$AMOS (4) IS$BMOS5(7) 0$BMO5 (7) C$MO5 (4)

MPC line printer OS$SALOG6 (4)

PRIMOS file
system
(compressed) ISADO7(1) OSADO7 (1) IS$BDO7 (1) 0$BD07(1) SEARCH (1)

PRIMOS file
system
(uncompressed) I$AD07 (1) O$ADO08 (1) I$BDO7 (1) O$BDO7 (1) SEARCH (1)

Serial card
reader ISAC09(3)

7-track mag.
tape I$AM1O0 (4) OS$AM10 (4) ISBM10(7) O$BM10 (7) C$M10 (4)

7-track mag.
tape
(BCD) ISAM11(7) O$AM11 (7) CSM11(7)

9-track mag.
tape
(EBCDIC) I$AM13(7) 0$AM13(7) CSM13(7)

Versatec
printer/
plotter O$AL14(3)

MPC card
processor ISAC15(3) OSAC15(3)

* Numbers in parentheses refer to the following notes.

2-3 First Edition

SUBROUTINES, VOLUME IV

Notes to Table 2-1

Available in R-mode and V-mode. Listed in CONIOC (Chapter 3) and
may be called directly or via the device-independent drivers.

Available in R-mode only. Listed in CONIOC (Chapter 3) and may be
called directly or via the device-independent drivers.

Available in R-mode only. Listed in FULCON but not CONIOC
(Chapter 3). May not be called via the device-independent
drivers, unless FULCON is assembled and loaded before the 1library
is loaded.

Available in R-mode and V-mode. Listed in FULCON (Chapter 3). In
V-mode programs, these routines may be called directly or via the
device-independent drivers if the default FORTRAN library (PFTNLB)
is loaded. If the R-mode or the nonshared V-mode library
(NPFTNLB) is loaded, the routine may not be <called via the
device-independent drivers unless FULCON is assembled and loaded
before the library is loaded. See Chapter 3 for a more complete
discussion of IOCS table usage. Routine may be called by name
without specific procedures.

Available in R-mode and V-mode. For R-mode, routine is listed in
CONIOC (Chapter 3) and may be called directly or via the
device-independent drivers. For V-mode, routine is 1listed in
FULCON (Chapter 3) and may be used in same manner as R-mode as
long as the default FORTRAN 1library (PFTINLB) is loaded. In
R-mode, or V-mode when the nonshared FORTRAN library (NPFTNLB) is
loaded, the routine may not be called via the device-independent
drivers unless FULCON 1is assembled and loaded before the library
is loaded. See Chapter 3 for a more complete discussion of I0CS
table usage.

Available in R-mode and V-mode, but is not in CONIOC (Chapter 3)
or FULCON. To call the routines via the device-independent
drivers, the appropriate table must be modified, asserbled, and
loaded before the library is loaded. (See Chapter 3.) The
routine may be called specifically without any special procedures.

Available in R-mode and V-mode. V-mode is listed in FULCON but
not in CONIOC (Chapter 3). R-mode is not in CONIOC or FULCON. In
V-mode, if the nonshared FORTRAN library (NPFTNLB) is loaded, the
routine may not be called via the device- independent drivers
unless FULCON is assembled and loaded before the library is
loaded. In R-mode, the appropriate table must be modified,
assembled, and loaded before the 1library is 1loaded. 1In both
modes, the routine may be called specifically without any special
procedures.

First Edition 2-4

I J

()

2 J

Yy)H

)

INTRODUCTION TO IOCS

Table 2-2
Physical Device Numbers

Physical Device Device Description

1 User terminal

2 Paper-tape reader or punch

3 MPC card reader

4 Serial line printer

5 9-track magnetic tape ASCII/BINARY

6 MPC line printer

7 PRIMOS file system (compressed ASCII)

8 PRIMOS file system (uncompressed ASCII)
9 Serial card reader

10 7-track magnetic tape ASCII/BINARY
11 7-track magnetic tape BCD
12 (User terminal/command file) command input
13 9-track magnetic tape EBCDIC
14 Versatec Printer/Plotter

2-5 First Edition

SUBROUTINES, VOLUME IV

Logical Devices, Physical Devices, and File Units

Table

2-3

FORTRAN Default
Logical Unit Number

Physical Device or Unit

S w Nk

User te

rminal

Paper—-tape reader or punch

MPC car

Serial line printer (system option

d reader

controller or SOC)

PRIMOS
PRIMOS
PRIMOS
PRIMOS
PRIMOS
PRIMOS
PRIMOS
PRIMOS
PRIMOS
PRIMOS
PRIMOS
PRIMOS
PRIMOS
PRIMOS
PRIMOS
PRIMOS
9-track
9-track
9-track
9-track
7-track
7-track
T-track
7-track
PRIMOS
PRIMOS
PRIMOS

PRIMOS

file unit
file unit
file unit
file unit
file unit
file unit
file unit
file unit
file unit
file unit
file unit
file unit
file unit
file unit
file unit
file unit
magnetic
magnetic
magnetic
magnetic
magnetic
magnetic
magnetic
magnetic
file unit
file unit
file unit

file unit

MPC printer 0
MPC printer 1

woJdouds W

10
11
12
13
14
15
16
tape
tape
tape
tape
tape
tape
tape
tape

18
19

127

unit
unit
unit
unit
unit
unit
unit
unit

WNhRFROWNDR O

First Edition

) J

J

59

)

INTRODUCTION TO IOCS

Notes to Table 2-3

All IOCS routines use the Logical Unit Number Table. BAll Logical Unit
Numbers therefore must fall within the range 1-141. Note also that
these Logical Unit Numbers supply default mapping values for Primos
Physical File Units in the range 1-127.

With Revision 19.4 the full range for Primos Physical Unit numbers
(1-127 per user) was expanded to cover 1-32761. However, there has
been no change in default mapping of Physical Units to Logical Units.

There is no default mapping of Primos Units to Logical Units where the

Primos Unit is 128 or larger.

If a Primos Unit greater than 127 is used, and the user wishes to use
IOCS subroutines, a call to ATTDEV must be made to explicitly map this
Physical Unit to an available Logical Unit (within the range of 1-141).

2-7 First Edition

SUBROUTINES, VOLUME IV

PARALLEL
PRIMOS SERIAL LINE PRINTERS VERSATEC
FILE SYSTEM (CENTRONICS)) (MPC) PRINTER/PLOTTER

O$ALO6
O$AL04 Os$AL14

I$ADO7 (ASCIl) 1SBDO7 (BINARY)
O$xDxx
O$ADO7 MAGNETIC TAPES
(ASC!l COMPRESSED)
0$ADO8 O3$AMO5
(ASCII FIXED LENGTH RECORDS)
0$BD07 I3AMO5
(BINARY)
COMMAND FILE
- -~ O$AMI13
SERIAL ¢ L 18AA2 9-TRACK
1
' \ — SAMT3 EBCDIC
N - - - -
CARD READERS —»| MEMORY
-
I$AC03 I O$AM10
PARALLEL — 7 TRACK
(MPC) ' ASCIl
1 A i ISAM10
[ISAC09
SERIAL O$AM11
7-TRACK
ISAM11 BCD
PAPER TAPE
N—— | ISAP02/ISBP02
READER C$P02 i X$AMxx
PUNCH [~._ —enm="" - O$AP02/0$BPO2 TRANSFER ASCII DATA
C$P02 ¢ x$BMxx
N——— TRANSFER BINARY DATA
0$BAD1
1$BAOT
ISAAO1
C$A01
C$AO1
USER ASR
TERMINAL READER/PUNCH
Transfer of Data to and from High-speed User Memory
Figure 2-1
First Edition 2-8

))

))

)

INTRODUCTION TO IOCS

PARAMETERS USED FOR IOCS SUBROUTINES

The following parameter names are used throughout Part III. The TIOCS
subroutines were first developed with FTN programmers in mind;
therefore data types here receive FORTRAN descriptions. However, other
languages (especially PL/I) may also call these subroutines, with
certain restrictions. For example, refer to altrtn below. Therefore,
the individual subroutines are given data descriptions in a PL/I
format.

altrtn An INTEGER*2 assigned the value of a numeric label
in the user’s FORTRAN program, to be used as an
alternate return from the subroutine in case of
error. The label number should be preceded by a
$. FORTRAN calls may omit the argument or give it
the value of 0 if no alternate return is wanted.
Programs in PL/I may also use the (fixed bin(15))
altrtn; since such programs are in V-Mode, users
must consider the caution below. Other calling
languages should omit the argument (not use 0).

Note

If in V-Mode, the altrtn label must be in the same stack frame
as the code that made the call.

buffer The name of a data area to or from which data is
moved (INTEGER*2 array in FTN or char array in
PL/I).

count The number of halfwords to be transferred, or the
length of a buffer or filename (INTEGER*2 or fixed
bin(15)).

buffer_size The record size associated with the logical unit.

Must be as large as the maximum record size,
measured in 16-bit halfwords (INTEGER*2 or fixed

bin(15)).

logical_device Same as logical_unit below. (INTEGER*2 or fixed
bin(15)).

logical_unit The FORTRAN logical unit (see Table 2-3). Must be
between 1-141 inclusive. (INTEGER*2 or fixed
bin (15)).

name A filename, also called name(l) to suggest a FTN

array. (INTEGER*2 or char(*)).

2-9 First Edition

SUBROUTINES, VOLUME IV

physical_device

physical_unit

file_unit

sub_unit

First Edition

The position in the device-type table (see Table
2-2). A physical device 1is a device type such as
magnetic tape or a user terminal. (INTEGER*2 or
fixed bin(15)).

The sub-unit number of a physical device having
more than one unit (see Table 2-3). A physical
unit designation distinguishes among the units of
a physical device that has multiple units, such as
a magnetic tape controller. For disk (the file
system), the physical unit corresponds to the file
unit (below). If the device has only one unit,
its sub-unit number is 1. If it is a
multiple-unit device such as disk or tape,
sub-units 1 through 8 may be specified. (On disk,
a sub-unit 1is actually processed as file 1-8.)
(INTEGER*2 or fixed bin(15)).

The PRIMOS file-unit (funit) number from 0 through
32761. (Users may assign 2 and above; the system

makes assignments for 0 and 1.) File wunits are
discussed in Vol. II as well as in the Advanced
Programmer’s Guide. (INTEGER*2 or fixed bin(15)).

The unit for multi-unit devices (for disk, file

unit number) . This is the same as the physical
unit (see Table 2-3). (INTEGER*2 or fixed
bin(15)).

2-10

J

J

39

D

3
Device Assignment

TEMPORARY DEVICE ASSIGNMENT

The user may assign any device by calling the ATTDEV subroutine.
ATTDEV controls mapping of 1logical units into physical devices and
controls the record size associated with the logical unit. Nonsharable
devices may also be assigned on command level with the PRIMOS command
ASSIGN. If vyou wish to make a permanent device assignment, go to that
section after the descriptions of IOCS$G, IOCS$F, and ATTDEV.

As discussed in Chapter 2, IOCS is limited to the use of 127 default
file units per wuser, whereas the file system subroutines in Volume II
use PRIMOS to dynamically allocate up to 32761 file units per user.

IOCS is also limited to a maximum of 141 FORTRAN logical units that it
does not dynamically allocate and free. Therefore, if you plan to
extensively use IOCS subroutines, you must make a strategic use of the
logical unit handlers IOCS$G and IOCSSF to obtain an available logical
unit. You must then map that logical unit to an available file unit,
using a call to ATTDEV. You may assign file units greater than the
default 127, but you are still limited to 141 logical units.

Caution

R-Mode subroutines can be called from FITN and PMA in R-Mode
only. If you call an R-Mode routine from a program in a
different mode, the results are unpredictable. Refer to the
FORTRAN and PMA chapters in Volume I for information on
declaring parameters in FTN and PMA, respectively.

3-1 First Edition

SUBROUTINES, VOLUME IV
I0OCS$_GET LOGICAL_UNIT

Alternate Name

Calls from FTN programs require the six-character name: IOCS$G. Other
languages may use IOCS$G as an optional calling form.

Purpose
This routine is used to perform two tasks: 1) to provide an available

logical file wunit number to a calling program; 2) to set aside as "in
use”™ a particular logical file unit number already found available.

Usage

DCL IOCSS_GET_LOGICAL_UNIT ENTRY(FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15));

CALL IOCS$_GET_LOGICAL_UNIT (key, logical_unit,
code) ;

Parameters
key
INPUT. Indicates the desired function to be performed. Values may
be:
1 get an available logical unit
2 set the specified logical unit to "in use"

logical_unit

INPUT/OUTPUT. If key=1, logical_unit returns as output the number
of an available logical unit. If key=2, you must input in
logical_unit the number of that logical unit whose bit is to be set
in the logical unit table (LUTBL). Valid logical unit values are
in the range 1-141.

First Edition 3-2

J J

r
-

RN

IOCS$_GET _LOGICAL_UNIT DEVICE ASSIGNMENT

code

OUTPUT. Indicates the result of the subroutine request. Aside
from the usual code of (0) for success, possible values are:

ESNSUC no available logical unit numbers
ESUIUS logical unit already in use

E$BUNT logical unit is not a valid number

Discussion

When a program calls this subroutine with key=1 (get an available
logical file wunit), the routine returns that number in logical unit.
If there are no available logical unit numbers, the routine returns
ESNSUC in code.

When a program calls this subroutine with key=2 (set a bit in the
logical unit table), the routine will attempt to set the bit
corresponding to that logical wunit number input in logical_unit. If
the unit is already in use, code returns E$UIUS. If the wunit is not
valid, code returns ES$BUNT. Otherwise code returns the usual 0 to
indicate completion with no errors.

Loading and Linking Information

NPFTNLB --— V-Mode (unshared)
PFTNLB - V-Mode ¥

3-3 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

J

I0OCS$ FREE_LOGICAL_UNIT

J

Alternate Name

Calls from FTIN programs require the six-character name: IOCSS$F. Other
languages may use IOCS$F as an optional calling form.

Purpose

This routine allows a calling program to free a logical file unit
number so that it is made available in the Logical Unit Table (LUTBL)
to another calling program.

Usage

DCL IOCSS$S_FREE_LOGICAL_UNIT ENTRY(FIXED BIN(15), FIXED BIN(15)):

CALL IOCS$_FREE_LOGICAL_UNIT (logical_unit, code):

Parameters ﬂ

logical_unit
INPUT. This must contain the logical file wunit number that is
being freed to the logical unit table. Valid logical unit values
are in the range 1-141.
code
QUTPUT. Indicates the result of the subroutine request. The ‘.\‘
possible values are:
ESOK The call to IOCSSF was completed without error.

ESBUNT The logical unit is not a valid number.

ESUNOP The logical unit is not open.

J

First Edition, Update 2 3-4

D

YD)

IOCS$_FREE_LOGICAL_UNIT DEVICE ASSIGNMENT

Discussion

IOCS$_FREE_LOGICAI_UNIT frees to the Logical Unit Table the number
specified in logical_unit. The routine returns a success code of ESOK
if the unit was freed, or E$UNOP if the unit is not open.

If the unit number passed is not a valid unit number, then an error
code ES$BUNT is returned in code.

Loading and Linking Information

NPFTNLB -~-- V-Mode (unshared)
PFTNLB - V-Mode

3-5 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

ATTDEV

PUIEOSG

ATTDEV attaches specified devices by associating logical _device with
physical_device and associating the logical_device with a specific
physical unit or file unit for the device.

Usage

DCL ATTDEV ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15)):

CALL ATTDEV (logical_device, physical device, physical_unit,
buffer_size);

Parameters

logical_device

INPUT. The device-independent logical I/0 wunit (Table 2-3),
synonymous with the FORTRAN logical unit. This number cannot be
changed.

physical_device

INPUT. The number corresponding to the relevant device-type in
(Table 2-2).

physical_unit

INPUT. The sub-unit number of a physical device having more than
one unit (refer to Table 2-3). A physical wunit designation
distinguishes among the units of a physical device that has
multiple units, such as a magnetic tape controller. For disk (the
file system), the physical unit corresponds to the file unit. If
the device has only one unit, its sub-unit number is 1. If it is a
multiple-unit device such as disk or tape, sub-units 1 through 8
may be specified. (On disk, a sub-unit is actually processed as
file 1-8.)

buffer_size

INPUT. The record size associated with the logical unit. It must
be as large as maximum record size, expressed in 16-bit halfwords.

First Edition, Update 2 3-6

4 J

J J

M)

Y

ATTDEV DEVICE ASSIGNMENT

Discussion

For the given logical_device, set the physical_device, physical unit,
and buffer_size so that the logical unit has a current mapping. Note
that buffer_size is measured in halfwords (holding two characters in
each) .

Example

To reassign:

e a card reader (logical unit 3)
e to physical device 2 (which has no sub-units)

e with the ability to read 80-column cards (i.e., 80/2)

enter the following:

CALL ATTDEV(3, 2, 0, 40)

Errors
If device is incorrect, ATTDEV returns the message:

ATTDEV BAD UNIT (physical_unit)

Loading and Linking Information

FTNLIB - R-Mode
PFTNLB - V-Mode
NPFTNLB -~ V-Mode (unshared)

3-7 First Edition

SUBROUTINES, VOLUME IV ATTDEV

PERMANENT DEVICE ASSIGNMENT

Users whose programs need to use devices other than the user terminal,
the disks, or paper-tape reader or punch, or who wish to change the
assignment of 1logical to physical devices must consult their System
Administrator. The following discussion is an overview of the System
Administrator’s work.

To facilitate changes to device assignments, the tables used by IOCS
(such as LUTBL and PUTBL) are in the following files on the master
disk.

V-Mode SYSTEM_LIBRARYSRC>INSERT>CONIOC.INS.PMA
R-Mode RFTNLIB>IOCS>CONIOC.PMA

Ask your System Administrator how to locate the master disk on a
multidisk system.

Note that the R-Mode CONIOC.PMA in the RFTNLIB supports only the user
terminal, the paper-tape reader, paper-tape punch, and the PRIMOS file
system. An attempt to perform I/O to a physical device not supported
by CONICC will fail. The default CONIOC for V-Mode supports the user
terminal and PRIMOS file system only.

IOCS Tables

If a computer installation requires that user programs use devices not
supported by CONIOC, the System Administrator must modify the CONIOC
tables RATBL, RBTBL, WATBL, and WBTBL, and then rebuild the FORTRAN
library. There is a version of CONIOC that contains all the available
I0CS drivers set up in the appropriate tables. This file is
INSERT>FULCON.INS.PMA in SYSTEM_LIBRARYSRC, or IOCS>FULCON.PMA in
RFTNLIB. The System Administrator can use FULCON as an example of how
to set up CONIOC. The table entries that are not required can be set
to 0.

The System Administrator may also change the default
logical-to-physical-device association as given in Tables 2-2 and 2-3
by changing the IOCS tables RATBL, TBTBL, WATBL, and CNTBL in CONIOC.
For example, the fifth entry of LUTBL (indicating 1logical device 5)
contains 7. Entry 7, the RATBL, contains I$AD07, which is a driver for
the PRIMOS file system. Other numbers indicate physical devices, as
shown in Table 2-2. PUTBL is the sub-unit table. The sub-unit table
contains the individual unit or file numbers as required for multifile
devices. For example, LUTBL contains the same number of logical
devices 21, 22, 23, and 24, indicating 9-track magnetic tape. PUTBL
contains 0, 1, 2, and 3 for logical devices 21, 22, 23, and 24
indicating unit 0, 1, 2, and 3 of 9-track magnetic tapes.

First Edition 3-8

)

J J

N

ATTDEV DEVICE ASSIGNMENT

Modifying CONIOC to Change Device Assignment

Changing a device assignment is a System Administrator’s responsibility
and not a user function. The System Administrator may add or delete a
device to any of the following tables.

RATBL Read ASCII table.

RBTBL Read binary table.

WATBL Write ASCII table.

WBTBL Write binary table.

CNTBL Perform control function (endfile, rewind, etc.).

Input-only Devices: Input-only devices such as the card reader do not

need WATBL and WBTBL entries. Furthermore, an ASCII-only device (such
as a line printer) does not need RBTBL and WBTBL entries.

Order of Entries: The order of entries in the above-mentioned tables

corresponds to physical-device numbers defined in Table 2-2.

R-Mode Procedures:

1 Attach to RFTNLIB>IOCS.
2 Edit the appropriate tables within CONIOC.PMA.
3 Replace the 0 with the corresponding subroutine name for

the desired device.

4 Rebuild the RFTNLIB library. (See below.)

3-9 First Edition

SUBROUTINES, VOLUME IV ATTDEV

V-Mode Procedures:

1 Attach to SYSTEM_LIBRARYSRC>INSERT.
2 Edit the appropriate tables within the CONIOC.INS.PMA.
3 Replace the word NULLDEVICE with the appropriate device

subroutine name.

4 Rebuild the SYSTEM_LIBRARYSRC Library. (See below.)

How to Rebuild the FORTRAN Library after Modifying CONIOQOC

After you have made changes in CONIOC for either the R-mode or V-mode
version of the FORTRAN library (see the previous procedures), you must
rebuild the library before the changes will take effect.

R-Mode Procedures: Rebuild the R-Mode FORTRAN library as follows:

1 Attach to RFTNLIB.

2 Run RFTNLIB.BUILD.CPL.

3 Run INSTALL_FTNLIB.CPL.

4 Share the new library (a System Administrator
procedure) .

V-Mode Procedures: Rebuild the V-Mode FORTRAN library as follows:

1 Attach to SYSTEM_LIBARYSRC

2 Run SYSTEM_LIBRARY.BUILD.CPL.

3 Share the new library (a System Administrator
procedure) .

First Edition 3-10

J J

')

)

4
Device-Independent
Drivers

This chapter presents the subroutines listed in the top (horizontal)
row of Table 2-1. The subroutines have the following functions:

Routine Function

WRASC Write ASCII data

RDASC Read ASCII data

WRBIN Write binary data

RDBIN Read binary data

CONTRL Other control functions

Maintain device independence in your data transfers through the use of
these IOCS drivers. These device-independent or first-level drivers
route the I/0 request to one of the device-dependent drivers, as shown
in Table 2-1 and Figure 2-1. The device-dependent drivers are
presented in the following chapters (5 through 7). Each column of
Table 2-1 represents an I/O function, and each row a specific physical
device. All drivers in a single column are designed to be compatible
in terms of internal data format.

4-1 First Edition

SUBROUTINES, VOLUME IV

DATA FORMATS

All first-level and second-level device drivers are uniform in the
internal representation of data. All ASCII data, for example, has the
same internal format regardless of the physical device.

ASCII Data

Data associated with logical I/0O functions RDASC (Read ASCII) and WRASC
(Write ASCII) are represented internally as an ASCII string in card
image format. This string is of length N halfwords with each halfword
containing ASCII-coded characters. (N is defined in the calling
sequence to the driver.)

Notes

1. The new line character (’212) must not be used as data
because it is the end-of-record indicator.

2. ASCII drivers should be used only to transfer printable
ASCII characters.

Binary Data

Use RDBIN and WRBIN to transfer binary data. The external format
varies considerably from device to device, but the internal format
remains the same. Binary data can consist of anything and is not
interpreted by the driver in any way.

The parameter buffer (buffer address) in a call to RDBIN (Read Binary)
or WRBIN (Write Binary) defines the first halfword of the binary data.
The user must define the halfword count on output.

Caution

R-mode subroutines can be called from FTN and PMA in R-mode
only. If you call an R-mode routine from a program in a
different mode, the results are unpredictable. Refer to the
FORTRAN and PMA chapters in Volume I for information on
declaring parameters in FTN and PMA, respectively.

First Edition 4-2

J

)

DEVICE-INDEPENDENT DRIVERS

WRASC

Purpose

WRASC writes ASCII characters to any output device.

Usage

DCL WRASC ENTRY(FIXED BIN(15), CHAR(*), FIXED BIN(15),
FIXED BIN(15)):

CALL WRASC (logical_device, buffer, count, altrtn):

Parameters

logical _device

INPUT. The device-independent logical I/O unit (Table 2-3),
synonymous with the FORTRAN logical unit. This number cannot be
changed.

buffer

INPUT. The name of a data area from which data in memory is moved
to the output device.

count

INPUT. The number of halfwords to be transferred, or the length in
halfwords of a buffer or filename.

altrtn

INPUT. The value of a numeric label in the user’s FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument, but not
use 0.

4-3 First Edition

SUBROUTINES, VOLUME IV WRASC

Discussion
The contents of buffer are moved from memory to the output device. The

format of the data on the output medium is device-specific. Memory is
assumed to consist of ASCII, two characters per halfword.

Loading and Linking Information

FTNLIB - R-mode

PFTNLB - V-mode

NPFTNLB -—- V-mode (unshared)

SVCLIB - R-mode (maintained for PRIMOS-II)

First Edition 4--4

J

M)

DEVICE-INDEPENDENT DRIVERS

RDASC

Purpose

RDASC reads ASCII characters from any input device.

Usage

DCL RDASC ENTRY (FIXED BIN(15), CHAR(*), FIXED BIN(15),
FIXED BIN(15));

CALL RDASC (logical_device, buffer, count, altrtn):

Parameters
logical_device
INPUT. The device-independent logical I/O unit (Table 2-3),

synonymous with the FORTRAN logical unit.
buffer

OUTPUT. The name of a data area to which data is moved from the
input device.

count

INPUT. The number of halfwords to be transferred, or the length
halfwords of a buffer or filename.

altrtn

INPUT. The value of a numeric label in the user’s FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument but not
use 0.

4-5 First Edition

SUBROUTINES, VOLUME IV RDASC

Discussion

One record is brought into memory. Buffer is always filled with count
ASCII characters, two per halfword. If the record is longer than count
halfwords, buffer contains the first count halfwords in the record and
the next successive read will give the first count halfwords of the
next record, not the remaining halfwords of the long record. If the
record is less than count halfwords, the remainder of the buffer will
be blank-filled.

Loading and Linking Information

FTNLIB -- R-mode

NPFTNLB -—-- V-mode (unshared)

PFTNLB - V-mode

SVCLIB - R-mode (maintained for PRIMOS-II)
First Edition 4-6

J)

)

DEVICE-INDEPENDENT DRIVERS

WRBIN

Purpose

WRBIN writes binary data to any output device.

Usage

DCL WRBIN ENTRY(FIXED BIN(15), CHAR(*), FIXED BIN(15),
FIXED BIN(15)):

CALL WRBIN (logical_device,buffer,count,altrtn);

Parameters
logical_device

INPUT. The device-independent logical I/O unit (Table 2-3),
synonymous with the FORTRAN logical unit. This number cannot be
changed.

buffer

INPUT. The name of a data area from which data in memory is moved
to the output device.

count

INPUT. The number of halfwords to be transferred, or the length in
halfwords of a buffer or filename.

altrtn

INPUT. The value of a numeric label in the user’s FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The 1label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument but not
use 0.

4-7 First Edition

SUBROUTINES, VOLUME IV

Discussion

WRBIN

The number of halfwords specified by count are written from buffer to

the specific output device. The format
device-dependent.

Loading and Linking Information

FTNLIB - R-mode

NPFINLB -- V-mode (unshared)

PFTNLB - V-mode

SVCLIB —— R-mode (maintained for PRIMOS-II)

First Edition

4-8

of

the

data

is

R

('_)

)

DEVICE-INDEPENDENT DRIVERS

RDBIN

Purpose

RDBIN reads binary input from any input device.

Usage

DCL RDBIN ENTRY (FIXED BIN(15), CHAR(*), FIXED BIN(15),
FIXED BIN(15)):

CALL RDBIN (logical_device,buffer,count,
altrtn):;

Parameters
logical_device

INPUT. The device-independent logical I/O wunit (Table 2-3),
synonymous with the FORTRAN logical unit. This number cannot be
changed.

buffer

OUTPUT. The name of a data area in memory to which data is moved
from the input device.

count

INPUT. The number of halfwords to be transferred, or the length in
halfwords of a buffer or filename.

altrtn

INPUT. The value of a numeric label in the user’s FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument but not
use 0.

4-9 First Edition

SUBROUTINES, VOLUME IV RDBIN

Discussion

A record is read into memory. Count is the maximum number of halfwords
that will be read into buffer. If the record is less than count long,
then count will be set to the number of halfwords actually read. If
the record is longer than count, only the first count halfwords will be
read.

Loading and Linking Information

FTNLIB - R-mode

NPFTNLB -—- V-mode (unshared)

PFTNLB - V-nmode

SVCLIB ~— R-mode (maintained for PRIMOS-II)
First Edition 4-10

J)

M)

DEVICE-INDEPENDENT DRIVERS

CONTRL

Purpose

Use of CONTRL provides certain nondata transfer functions, such as
opening a PRIMOS file for reading. CONTRL has generally been replaced
with SRCH$S, but is maintained here for certain IOCS applications.

Usage

DCL CONTRL ENTRY (FIXED BIN(15), CHAR(*) VARYING, FIXED BIN(15),
FIXED BIN(15)):;

CALL CONTRL (key, name, logical_device, altrtn):

Parameters
key

INPUT. A numeric option code that may have the following values:

1 Open for reading.

2 Open for writing.

3 Open for read/write.

4 Close.

5 Delete file.

6 Move forward one file mark (MT only).

7 Rewind to beginning of file.

8 Select device and read status (MT only). Status is

returned in the A-register, and must be read by a
user-written PMA subroutine.

-1 Write file mark (MT only).
-2 Backspace one record (MT only).
-3 Backspace one file mark (MT only).
-4 Rewind to beginning of tape (MT only).
4-11 First Edition

SUBROUTINES, VOLUME IV CONTRL

Note

For calls to disk files, key may have many other values.
See SRCHSS. Keys other than 1-4 are not
device-independent.

name
INPUT. Filename (0 if none).
logical_device

INPUT. The device-independent logical 1I/O unit (Table 2-3),
synonymous with the FORTRAN logical unit.

altrtn

INPUT. The value of a numeric label in the user’s FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other <calling languages should omit the argument but not
use 0.

Discussion
Functions not applicable to a particular device are ignored;

therefore, functions can be requested in a device-independent way. See
Table 4-1 for operation effects.

Loading and Linking Information

FTNLIB - R-mode

NPFTNLB -- V-mode (unshared)

PFTNLB - V-mode

SVCLIB - R-mode (maintained for PRIMOS-II)
First Edition 4-12

4)

3 9

CONTRL

DEVICE-INDEPENDENT DRIVERS

Table 4-1

List of Keys and Operating Effects for CONTRL

Paper-Tape
Key Terminal Reader/Punch Magtape Disk
(C$A01) (C$P02) (CSMxx) (SEARCH)
1 a a a a
2 q q b b
3 q q c c
4 r r d p
5 - - h e
6 a q 1 2
7 s s n f
8 -~ -- k g
-1 - - 1 z
-2 -— - m z
-3 - - n z
-4 - - o z
a Open for read.
b Open for write.
c Open to read and write.
d Rewind and close file.
e Delete file.
f Position to beginning of file.
g Truncate file.
h Move forward one record.
i Move forward one file mark.
k Select device and read status.
1 Write file mark.
m Backspace one record.
n Backspace one file mark.
o Rewind to BOT (beginning of tape).
jo) Close file.
q Turn on punch and punch reader.
r If device was open for output, punch trailer
and turn off paper-tape punch and reader.
s Halts allowing operator to rewind tape.

z

Keys other than 1 through 4 are not device-independent.

Type 'START’ to continue.
Abort (BAD KEY error).

First Edition

M)

5
Disk Subroutines

This chapter describes two groups of subroutines for disk I/0
operations. It also describes the subroutine DKGEOS.

The first group is a subset of the device-dependent drivers listed in
Table 2-1. They are the drivers listed in the rows for the PRIMOS file
system. Most users will find that other (file system) subroutines
described in Volume II do the same function as these routines, but in a
manner more accessible to the user.

The second group of subroutines are obsolete non-file-system disk
subroutines: DS$SINIT, RRECL, and WRECL. The subroutines are maintained
here for any remaining sites using such a disk system not based on
files.

The last subroutine, DKGEOS$, is used for registering the format of
non-standard disks with a disk driver.

5-1 First Edition

SUBROUTINES, VOLUME IV

These are the subroutines presented or listed in this chapter:

Routine Meaning

OS$ADO07 Write ASCII to disk (obsolete).

I$ADO7 Read ASCII from disk.

0$BDO7 Write binary to disk.

ISBDO7 Read binary from disk.

0S$AD08 Write ASCII to disk (fixed-length records).

DSINIT Initialize disk (obsolete).

RRECL Read one disk record (obsolete).

WRECL Write one disk record (cbsolete).

DKGEOS$ Register disk format with driver.
Caution

R-mode subroutines can be called from FIN and PMA in R-mode
only. If you call an R-mode routine from a program in a

different mode, the results are unpredictable. Refer to the
FORTRAN and PMA chapters in Volume I for information on
declaring parameters in FTN and PMA, respectively.

DRIVER SUBROUTINES

These subroutines are the drivers 1listed in Table 2-1 as the

device—~dependent drivers for the PRIMOS file system, in both compressed

and uncompressed formats. They are: O$SADO7, ISADO7, OS$SBDO7,
and O$BDO08.

First Edition 5-2

I$BDO7,

J J

J

9

DA

DISK SUBROUTINES

O$ADO7

Note
0$AD07 has been replaced by WTLINS (see Volume II). The

description for O$ADO7 has been relocated to Appendix E "Other
Obsolete Subroutines.™”

5-3 First Edition

SUBROUTINES, VOLUME IV

ISADO7

Purpose

ISADO7 reads information from the disk file open on file_unit, in
compressed ASCII format.

Usage

DCL I$ADO7 ENTRY(FIXED BIN(15), CHAR(*),
FIXED BIN(15), FIXED BIN(15)}):

CALL ISADO7 (file_unit, buffer, count, altrn);

Parameters
file_unit

INPUT. The PRIMOS file wunit (funit) number from 0 through 32761.

(Users may assign 2 through 32761.) Since a file wunit has a
position and access method, a user program need not keep track of a
file’s position and access. Examples of file unit strategy are

given with SRCH$$ in Volume II.
buffer

OUTPUT. The name of a data area in memory to which data is moved
from the disk file.

count

INPUT. The number of halfwords to be transferred, or the length in
halfwords of a buffer or filename.

altrtn

INPUT. The value of a numeric label in the user’s FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument, but not
use 0.

First Edition 5-4

J)

J

RN

ISADO7

Loading and Linking Information

FTNLIB - R-mode

NPFTNLB -—- V-mode (unshared)

PFTNLB - V-mode

SVCLIB - R-mode (maintained for PRIMOS-II)

DISK SUBROUTINES

First Edition

SUBROUTINES, VOLUME IV

O$BDO07

PUIEOSG

0$BD07 writes binary information to the file open on file_ unit.

Usage

DCL O$BDO07 ENTRY(FIXED BIN(15), CHAR(*),
FIXED BIN(15), FIXED BIN(15));

CALL O0$BD07 (file_unit, buffer, count, altrtn):;

Parameters
file_unit

INPUT. The PRIMOS file unit (funit) number from 0 through 32761.
(Users may assign 2 through 32761.) Since a file unit has a
position and access method, a user program need not keep track of a
file’s position and access. Examples of file unit strategy are
given with SRCH$$ in Volume II.

buffer

INPUT. The name of a data area in memory from which data is moved
to the disk file.

count

INPUT. The number of halfwords to be transferred, or the length in
halfwords of a buffer or filename.

altrtn

INPUT. The value of a numeric label in the user’s FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument, but not
use 0.

First Edition 5-6

) J

DI

0$BDO07

Loading and Linking Information

FTNLIB - R-mode

NPFTNLE -—- V-mode (unshared)
PFTNLB - V-mode

SVCLIB -

R-mode (maintained for PRIMOS-II)

DISK SUBROUTINES

First Edition

SUBROUTINES, VOLUME IV

1$BD07

Purpose

ISBD07 reads binary information from the file open on file_unit.

Usage

DCL I$BDO7 ENTRY(FIXED BIN(15), CHAR(*),
FIXED BIN(15), FIXED BIN(15)):

CALL IS$BDO07 (file_unit, buffer, count, altrtn);

Parameters
file unit

INPUT. The PRIMOS file wunit (funit) number from 0 throuhg 32761.
(Users may assign 2 through 32761.) Since a file unit has a
position and access method, a user program need not keep track of a
file’s position and access. Examples of file unit strategy are
given with SRCHS$$ in Volume II.

buffer

OUTPUT. The name of a data area in memory to which data 1is moved
from the disk file.

count

INPUT. The number of halfwords to be transferred, or the length in
halfwords of a buffer or filename.

altrtn

INPUT. The value of a numeric label in the user’s FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument, but not
use 0.

First Edition 5-8

J)

J J

M)

)

ISBDO7

Loading and Linking Information

FTNLIB - R-mode

NPFTNLB -—-— V-mode (unshared)
PFTNLB —— V-mode

SVCLIB _—

R-mode (maintained for PRIMOS-II)

DISK SUBROUTINES

First Edition

SUBROUTINES, VOLUME IV

O$ADO08

Purgose

OSAD08 writes ASCII from buffer onto the disk file open on file_unit.

Usa

DCL

e

OS$AD0O8 ENTRY (FIXED BIN(15), CHAR(*),
FIXED BIN(15), FIXED BIN(15));

CALL OSAD08 (file unit, buffer, count, altrtn);

Parameters

file_unit

INPUT. The PRIMOS file wunit (funit) number from 0 through 32761.

(Users may assign 2 through 32761.) Since a file unit has a
position and access method, a user program need not keep track of a
file’s position and access. Examples of file unit strategy are

given with SRCH$$ in Volume II.

buffer

INPUT. The name of a data area in memory from which data is moved
to the disk file.

count

INPUT. The number of halfwords to be transferred, or the length in
halfwords of a buffer or filename.

altrtn

INPUT. The value of a numeric label in the user’s FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument, but not
use 0.

First Edition 5-10

) J

'

4 I

M)

052aD08 DISK SUBROUTINES

Discussion

Information is written on the disk in fixed-length records. Each
record consists of count halfwords followed by a halfword containing NI
and NULL (’105000). This driver is not in the standard CONIOC supplied
by Prime.

Loading and Linking Information

FTNLIB - R-mode

NPFTNLB -- V-mode (unshared)

PFTNLB -— V-mode

SVCLIB -— R-mode (maintained for PRIMOS-II)

5-11 First Edition

SUBROUTINES, VOLUME IV

OBSQLETE DISK SUBROQUTINES

The subroutines DS$INIT, RRECL, and WRECL are not in FTNLIB.
intended for use by the System Administrator.

First Edition 5-12

They are

J)

)

M)

DISK SUBROUTINES
DSINIT

Purgose

The DSINIT routine is called to initialize disk devices.

Usage
DCL DS$SINIT ENTRY(FIXED BIN(15)):

CALL DS$SINIT (pdisk):

Parameters
pdisk

INPUT. The physical disk number to be initialized. (See RRECL,
following the Discussion below.)

Discussion

DSINIT initializes the disk controller and performs a seek to cylinder
0 on pdisk. DS$INIT must be called prior to any RRECL or WRECL calls.
pdisk must be assigned by the PRIMOS ASSIGN command before calling this
routine. DS$INIT was intended by use only by outdated system utilities.

5-13 First Edition

SUBROUTINES, VOLUME IV

RRECL

Purpose

Subroutine RRECL

reads one disk record from a disk into buffer in

memory. Before RRECL is called, the disk must be assigned by the
PRIMOS ASSIGN command and D$INIT must be called to initialize the disk.

The RRECL routine

was 1intended for wuse only by now-outdated system

utilities such as FIXRAT, MAKE, and the old disk COPY.

Usage

DCL RRECL ENTRY(PTR, FIXED BIN(15), FIXED BIN(15),
FIXED BIN(31), BITU(16) ALIGNED, FIXED BIN(15)):

CALL RRECL (addr(buffer), length, option_word
ra, pdisk, altrtn):;

Parameters

addr (buffer)

INPUT. Pointer to an array into which length halfwords from record
ra is to be transferred.

length

INPUT. The number of halfwords to be transferred.

option_word

INPUT. A 16-bit halfword with the following options:

Bit 1 set

Bit 2 set

Bit 3 set

First Edition

Perform current record address check.
Ignore checksum error.

Read an entire track (beginning at ra) into a buffer
3520 halfwords long, beginning at the buffer pointed
to by ra. (This feature may be used only if RRECL
is running under PRIMOS II, is reading a disk
connected to the 4001/4002 controller, and 1is a
32-sector pack.)

5-14

) J

J

R

RRECL DISK SUBROUTINES
Bit 4 set Format the track. This bit is only significant for
storage module disks.
Bits 5-8 Reserved.
Bits 9-16 Must be set on (1).
ra
INPUT. A 32-bit integer (INTEGER*4) specifying a disk record
address. Legal addresses depend on the size of the disk.
Size ra Range
Floppy disk 0-303
1.5M disk pack 0-3247
3.0M disk pack 0-6495
30M disk pack 0-64959
128K fixed-head disk 0-255
256K fixed-head disk 0-511
512K fixed-head disk 0-1023
1024K fixed-head disk 0-2047
pdisk
INPUT. The physical disk number of the disk to be read. pdisk
numbers are the same numbers available for use in the ASSIGN and
STARTUP commands of PRIMOS.
altrtn
INPUT. BAn integer variable in the user’s FORTRAN program to be
used as an alternate return in case of uncorrectable disk errors.
If this argument is 0 or omitted, an error message is printed.

5-15 First Edition

SUBROUTINES, VOLUME IV RRECL

Discussion

If an error is encountered and control goes to altrtn, ERRVEC (see
Appendix B in this Volume) is set as follows:

Code Message Meaning
ERRVEC (1) = WB On supervisor terminal: 10 times Disk hardware
ERRVEC(2) = 0 DISK RD ERROR pdisk ra status WRITE PROTECT

error

On user terminal: UNRECOVERED ERROR

ERRVEC(1) = WB On user terminal: 10 times Current record
ERRVEC(2) = CR DISK RD ERROR pdisk ra status Address error

followed by
UNRECOVERED ERROR

See the System Administrator’s Guide for a description of status error
codes.

Notes

Length must be between 0 and 448 unless pdisk is a storage
module, in which case length must be between 0 and 1040. If
this number is not 448 and pdisk is 20-27 (diskette), a
checksum error 1is always generated; bypassing can be
accomplished by setting the option-word’s bit 2 to 1. No
check is made for legality of ra.

On a DISK NOT READY, RRECL does not wait for the disk to
become ready under PRIMOS III or PRIMOS. Under PRIMOS 1II,
RRECL prints a single error message and waits for the disk to
become ready.

On any other read error, an error message is printed at the
system terminal, followed by a seek to cylinder 0 and a
reread of the record. If 10 errors occur, the message
UNRECOVERED ERROR is typed to the user or altrtn is taken.

First Edition 5-16

4)

J J

RN

DISK SUBROUTINES

WRECL

Purpose

Subroutine WRECL writes the disk record to a disk from buffer in
memory. The arguments and rules of the WRECL call are identical to
those of RRECL except for bits 1 and 2 of option-word, which have no
meaning on write. For a call to write a record on the diskette, the
buffer length must be 448 words.

DSINIT must be called before a call to WRECL.

Usage

DCL WRECL ENTRY (PTR, FIXED BIN(15), FIXED BIN(15),
BIT(16) ALIGNED, FIXED BIN(15)):

CALL WRECL (addr(buffer), length, option_word,
ra, altrtn):;

Parameters

Same as for RRECL. See below for clarification.

Discussion

The meaning of the parameters is the same as previously described in
RRECL, except that the function of the command is to write to, rather
than read from, the specified record address. The user of WRECL is
responsible for being careful to write only on areas of the disk that
do not contain significant user or operating system information. An
attempt to write on a write-protected disk generates the message:

DISK WT ERROR pdisk option-word status
WRITE PROTECT

on the supervisor terminal and the message:

UNRECOVERED ERROR

at the user terminal. ERRVEC (1) will contain error code WB, unless
altrtn is taken. Other write errors are retried ten times in a manner
similar to read errors. (Refer to RRECL.)

5-17 First Edition

SUBROUTINES, VOLUME IV

DKGEOS$

Purpose

This subroutine supplies the disk driver with the sector count for
non-standard disk formatting. You may have programs that read and
write assigned disks directly, without using the PRIMOS file system.
The default formatting for disk files is 9 sectors per track. If your

disk is formatted with a different number of sectors, DKGEOS$ must be
called to register the number of sectors with the disk driver.

Usage

DCL DKGEOS$ ENTRY (FIXED BIN(15), POINTER, FIXED BIN(15)):

CALL DKGEO$ (pdev, structp, code):

Parameters
pdev

INPUT. Physical device number.
structp

INPUT. Pointer to the address of an input structure, with the
following format:

dcl 1 struc,
2 version_number bin(15), /* Must be 0 (input)*/
2 spt bin(15); /* (input) */

code

OUTPUT. Returns either 0 for success or one of the standard error
codes, as given in Appendix A.

Discussion

This subroutine is necessary only if the number of sectors per track is
not 9. The disk driver’s record reverts to 9 when the disk 1is
unassigned.

Loading and Linking Information

NPFTNLB —-— V-mode (unshared)
PFTNLB - V-mode

First Edition 5-18

))

J I

M)

3

6
Terminal Drivers and
Terminal/Paper-Tape Subroutines

OVERVIEW
This chapter defines certain terminal driver subroutines.

This chapter also defines subroutines used to transfer data to and from
a user terminal or card reader/punch (ASR). Some of these are a subset
of the device-dependent IOCS drivers shown in Table 2-1, in the rows
for the user terminal and for paper tape.

The subroutines described in this chapter are listed in Table 6-1.
For the continuity and completeness of this chapter on user-terminal

and paper-tape subroutines, a second table, (Table 6-2) also lists
other subroutines for general terminal use. However, these subroutines

are described in Volume III.
Note
These subroutines expect data to be halfword-aligned. Be aware

that F77 calls with a substring argument do not always pass the
argument left-justified in a halfword.

6—1 First Edition

SUBROUTINES, VOLUME IV

Table 6-1
Subroutines for User Terminal and Paper Tape

Device Routine Function
User terminal C$A01 Controls functions for user
terminal.
User terminal or 0S$AA01 Qutputs ASCII to the user
ASR punch terminal or ASR punch.
Keyboard or ISAA01 Inputs ASCII from terminal or
ASR reader ASR reader.
ISAAL2 Performs the same function as
ISAAQ0L but also allows the
input to be from a cominput
file.
Paper Tape C$P02 Controls functions for paper
tape.
ISAPO2 Inputs ASCII from the
high-speed paper-tape reader.
0S$BPO0O2 Outputs binary data to the
high-speed paper-tape punch.
P1IB Inputs one character from the
high-speed paper-tape reader to
Register A.
P10OB Outputs one character to the
high-speed paper—-tape punch
from Register A.
P1IN Inputs one character from paper
tape, sets high-order bit,
ignores line feeds, sends a
line feed when carriage return
is read.
P10OU Outputs one character to the
high-speed paper-tape punch.
First Edition 6-2

))

J

M)

3

TERMINAL AND PAPER-TAPE SUBROUTINES

Table 6-2
Subroutines for General Terminal Use

Device Routine Function
User terminal BREAKS Inhibits or enables CONTROL-P.

C1lIN Gets next character from
terminal or command file.

C1INS Gets next character from
command line until carriage
return.

CNINS Moves characters from terminal
or command file to memory.

COMANL Reads a line of text from the
terminal or from a command
file.

ERKLSS Reads or sets erase and kill
characters.

TNOU Outputs count characters to the
user terminal followed by a
line feed and carriage return.

TNOUA OQutputs count characters to the
user terminal.

TOVFEDS$ Outputs the 16-bit integer num
to the terminal.

T1IB Reads one character from the
user terminal into Register A.

T1IN Reads one character from the
user terminal.

T10B Writes one character from
Register A to the user
terminal.

T10U Outputs char to the user
terminal. The data type must
be a 16-bit integer in F77.

6-3 First Edition

SUBROUTINES, VOLUME IV

Table 6-2
Subroutines for General Terminal Use
(Continued)
Device Routine Function
User terminal TIDEC Inhibits or enables CONTROL-P.
TIDEC Inputs decimal number.
TIOCT Inputs an octal number.
TIHEX Inputs a hexadecimal number.
TODEC Outputs a six-character signed

decimal number.

TOOCT Outputs a six-character
unsigned octal number.

TOHEX Outputs a four-character
unsigned hexadecimal number.

TONL Outputs Carriage return and
Line feed.

Caution

R-mode subroutines can be called from FTN and PMA in R-mode
only. If you call an R-mode routine from a program in a
different mode, the results are unpredictable. Refer to the
FORTRAN and PMA chapters in Volume I for information on
declaring parameters in FTN and PMA, respectively.

First Edition 6-4

))

M)

TERMINAL AND PAPER-TAPE SUBROUTINES
C$AO01

Purpose

C$A01 provides control functions for the user terminal. Because it is
written in R-mode only, the calling program must be written in either
FTN (as described below) or PMA.

Usage
INTEGER*2 key
INTEGER*2 name (1)
INTEGER*2 unit
INTEGER*2 altrtn

CALL C$A01 (key, name, unit[, altrtn])

Parameters
key

INPUT. Valid keys for C$A01l are 1 through 4 and 6 and 7. Refer to
Table 4-1 for the operating effects for each key.

name (1)

INPUT. The filename of the array for which the key declares a
control function. Rules for PRIMOS filenames apply.

unit
INPUT. Indicates the sub-unit number for this user terminal.

altrtn

INPUT. A parameter not wused by this routine, but maintained for
coding purposes.

Loading and Linking Information

FTNLIB - R-mode
SVCLIB - R-mode (maintained for PRIMOS-II)

6-5 First Edition

SUBROUTINES, VOLUME IV

O$AA01

Purpose

OSAAQO1 outputs ASCII to the user terminal or ASR punch.

Usage

DCL O$AAO0Ll ENTRY(FIXED BIN(15), CHAR(*),
FIXED BIN(15) [, FIXED BIN(15)1):

CALL O$AAO0l (sub_unit, buffer,
count [, altrtn]);

Parameters
sub_unit
INPUT. The sub-unit number of a physical device having more than
one unit. If the multi-unit device 1is an ASR card reader, the
possible choices are:
0 CRO, first controller
1 CR1, second controller
buffer
INPUT. Name of data area holding data for output to the device.
count

INPUT. Number of halfwords to be moved, two characters per
halfword.

altrtn

INPUT. A parameter not used by this routine, but maintained for
coding purposes.

Discussion

This subroutine itself calls the driver TNOU to perform the output from
buffer to the size of count.

First Edition 6-6

))

J

59

0%2A01

Loading and Linking Information

TERMINAL AND PAPER-TAPE SUBROUTINES

FTNLIB - R-mode

NPFTNLB -—- V-mode (unshared)

PFTNLB - V-mode

SVCLIB - R-mode (maintained for PRIMOS-II)

6-7

First Edition

SUBROUTINES, VOLUME IV

ISAAO1

Purpose

ISAAO0]1 reads ASCII from the terminal or ASR reader.

Usage

DCL ISAA01 ENTRY(FIXED BIN(15), CHAR(*) VARYING,
FIXED BIN(15) [, FIXED BIN(15)1]):

CALL I$AAO0l1 (sub_unit, buffer,
count [, altrtn]):

Parameters
sub_unit

INPUT. The sub-unit number of a physical device having

more than

one unit. If the multi-unit device is an ASR card reader, the

possible choices are:
0 CRO, first controller
1 CR1, second controller
buffer

OUTPUT. Name of data area that holds the data output
device.

count

from the

INPUT. Number of halfwords to be moved, two characters per

halfword.

altrtn

INPUT. Alternate return for FORTRAN programs calling this
subroutine in case of end of file or other error. It is a numeric
label in the user’s program; the number must be preceded by a §.
PL/I programs may also use altrtn, but its label must be in the
same stack frame used for the code of the calling module. Other
calling languages should omit the argument, but not use 0.

First Edition 6-8

J J

))

MY

ISAAQL TERMINAL AND PAPER-TAPE SUBROUTINES

Discussion

The kill and erase characters (question mark and quote mark by default)
may modify the dinput 1line, as with the PRIMOS III command line. The
characters NUL, DEL, DLE, DC2, DC3, and DC4 are ignored. The character
EXT (’203) indicates the end of file and 1is wused for reading tapes
through the user terminal.

Note that I$AA01 is not the entry for the user terminal in the
Prime-supplied CONIOC (Chapter 3). Ask your System Administrator to
put ISAAO0l1l in the RATBL, as explained in Chapter 3, to read paper tapes
with user programs. The editor should be used to read in the tape, and
then the user may read the file from disk.

Loading and Linking Information

FTNLIB - R-mode

NPFTNLB --— V-mode (unshared)

PFTNLB - V-mode

SVCLIB - R-mode (maintained for PRIMOS-II)

6-9 First Edition

SUBROUTINES, VOLUME IV

ISAA12

Purpose

ISAAl12 performs the same

function as ISAAO0l (it reads ASCII from the

terminal or ASR reader) but also allows the input from a cominput file.

Usage

DCL IS$AAl2 ENTRY (FIXED BIN(15), CHAR(*) VARYING,

FIXED BIN(15) [,

CALL I$AAl12 (sub_unit, buffer,

count [, altrtnl]);

Parameters
sub_unit
INPUT.

one unit. If the
possible choices are:

FIXED BIN(15)1);

The sub-unit number of a physical device having more
multi-unit device

is an ASR card reader

than
;, the

per

0 CRO, first controller
1 CR1l, second controller
buffer
OUTPUT. Name of data area that holds the data output from the
device.
count
INPUT. Number of halfwords to be moved, two characters
halfword.
altrtn
INPUT. Alternate return for FORTRAN programs calling

subroutine in case of end of
label in the user’s program;

PL/I programs may also use
same stack frame used for the
calling languages should omit

First Edition

file or other error.
the number must be preceded by
altrtn,
code of the calling module.
the argument, but not use 0.

this

It is a numeric

a $.

but its label must be in the

Other

J J

J

M)

ISAAl2

Discussion

TERMINAL AND PAPER-TAPE SUBROUTINES

Refer to the discussion for ISAAQ01 for details on how I$AA12 handles

command characters. dowever, note that IS$AAl2

referenced in the RATBL already.

Loading and Linking Information

FTNLIB - R-mode

NPFTNLB -- V-mode (unshared)

PFTNLB - V-mode

SVCLIB - R-mode (maintained for PRIMOS-II)
6-11

is

the subroutine

First Edition

SUBROUTINES, VOLUME IV

C$P02

Purpose

C$P02 provides control functions for paper tape.

Usage

DCL C$P02 ENTRY(FIXED BIN(15), CHAR(*) VARYING,
FIXED BIN(15) [, FIXED BIN(15)]):

CALL C$P02 (key, name,
physical _unit ([, altrtn]):

Parameters
key

INPUT. Valid keys for C$P02 are 1 through 4 and 6 and 7. Refer to
Table 4-1 for the operating effects for each key.

name

INPUT. The filename for which the key declares its control
function. Rules for PRIMOS filenames apply.

physical unit

INPUT. Indicates the sub-unit number for this paper—tape
reader/punch.

altrtn

OUTPUT. A parameter not wused by this routine, but maintained for
coding purposes.

Loading and Linking Information

FTNLIB - R-mode

NPFTNLB -—- V-mode (unshared)

PFTNLB —— V-mode

SVCLIB - R-mode (maintained for PRIMOS-II)
First Edition 6-12

))

R

)

3

I$AP02

Puggose

TERMINAL AND PAPER-TAPE SUBROUTINES

ISAP02 reads ASCII from the high-speed paper-tape reader.

Usage

DCL IS$AP02 ENTRY (FIXED BIN(15), CHAR(*) VARYING, FIXED BIN({(15) [,

FIXED BIN(15)1);

CALL I$APO2 (sub_unit, buffer, count[,

altrtnl):

Parameters

sub_unit

INPUT. The sub-unit number of a physical device having more
one unit. If the multi-unit device

possible choices are:

0 CRO, first controller

1 CR1l, second controller

buffer

than

is an ASR card reader, the

QUTPUT. Name of data area that holds the data output from the

device.
count

INPUT. Number of halfwords
halfword.

altrtn

INPUT. Alternate return for
subroutine in case of end of
label in the user’s program;

PL/I programs may also use
same stack frame used for the
calling languages should omit

to be moved, two characters

FORTRAN programs calling

per

this

file or other error. It is a numeric

the number must be preceded by

a §.

altrtn, but its label must be in the

code of the calling module.
the argument, but not use 0.

Other

First Edition

SUBROUTINES, VOLUME IV ISAPO2

Discussion
The KILL and ERASE characters (question mark and double guote by

default) modify the input. NUL, DEL, DLE, DC2, DC3, and DC4 are
ignored. The character ETX ('203) indicates end of file.

Loading and Linking Information

FTNLIB - R-mode

NPFTNLB -- V-mode (unshared)

PFTNLB - V-mode

SVCLIB - R-mode (maintained for PRIMOS~-II)
First Edition 6-14

) J

J J

5 9

TERMINAL AND PAPER-TAPE SUBROUTINES
O$BP02

Purpose

0$BP02 writes binary data to the high-speed paper-tape punch. Because
this subroutine is written in R-mode only, so must the calling program.
The Usage description below is given in FTIN to suggest a calling
program in R-mode, compiled without the -64V option.

Usage
INTEGER*2 unit
INTEGER*2 buffer(l)
INTEGER*2 hwcnt
INTEGER*2 altrtn

CALL O%BP02 (unit, buffer, hwent[, altrtn])

Parameters

UNIT
INPUT. A sub-unit of the physical device, in this case a
high-speed paper-tape reader. Refer to Table 2-2 (paper-tape punch

is assigned to physical device #2).

buffer

INPUT. Data area name for the array that receives data from the
device.

hwent

INPUT. A count of the number of halfwords to be moved, two
characters per halfword.

altrtn

INPUT. A parameter not used by this routine, but maintained for
coding purposes.

6-15 First Edition

SUBROUTINES, VOLUME IV 0$BP02

Discussion

The format of the paper-tape output can be found in a listing of this
driver. Ask your System Administrator for a copy of the listing.

Loading and Linking Information

FTNLIB -— R-mode
SVCLIB -- R-mode (maintained for PRIMOS-II)
First Edition 6-16

2)

()

)

M)

3

TERMINAL AND PAPER-TAPE SUBROUTINES

P1iB

Purpose

P1lIB reads one character from the high-speed paper-tape reader to
Register A.

Usage

DCL P1IB;

CALL P1IB;

Discussion

This subroutine has no arguments; the calling program (for example, a
program written in Prime Macro Assembly language) must have access to
Register A.

Note
Data items used by the routines CNINS$, TNOU, TNOUA, TOVFEDS,
T11B, T10B, T1lIN, T1OU, TIDEC, TIOCT, TIHEX, TODEC, TOOCT,
TOHEX, TONL, P1IB, P1OU, AND PI1IN must be halfword-aligned.
Thus, for example, a FORTRAN statement such as
CALL TNQUA (A(I:I),INTS(3))
always outputs a halfword-aligned byte of data item A, though

the user may be expecting the second byte of a halfword to be
displayed.

Loading and Linking Information

FTNLIB - R-mode

NPFTNLB -- V-mode (unshared)

PFTNLB - V-mode

SVCLIB -- R-mode (maintained for PRIMOS-II)

6-17 First Edition

SUBROUTINES, VOLUME IV

P10B

Purgose

P1OB writes one character to the high-speed paper-tape punch from
Register A.

Usage

DCL P1OB:;

CALL P1OB;

Discussion

This subroutine has no arguments; the calling program must have access
to Register A.

Loading and Linking Information

FTNLIB - R-mode

NPFTNLB -- V-mode (unshared)

PFTNLB - V-mode

SVCLIB —— R-mode (maintained for PRIMOS-IT)

First Edition 6-18

J J

)

P1IN

Purpose

TERMINAL AND PAPER-TAPE SUBROUTINES

P1IN reads one character from paper tape.

Usage

DCL P1IN ENTRY(FIXED BIN(15)):

CALL P1lIN (char):

Parameters
char

QUTPUT.

Discussion

The subroutine sets the high-order bit,

The character being loaded into memory from paper tape.

Line feed when a Carriage return is read.

Data items wused

T1IB, T10B,
TOHEX, TONL,

T1IN,

Note

by the routines CNINS,

T10U, TIDEC, TIOCT, TIHEX,
P1IB, P1lOU, AND P1lIN must be halfword-aligned.

Refer to P1lIB for a FORTRAN example.

Loading and

Linking Information

FTNLIB --
NPFTNLB -—-
PFTNLB -
SVCLIB -

R-mode
V-mode
V-mode
R-mode

(unshared)

(maintained for PRIMOS-II)

ignores line feeds, and sends a

TNOUA, TOVFDS,
TODEC, TOOCT,

First Edition

SUBROUTINES, VOLUME IV

P10U

Purgose

P1lOU writes one character to the high-speed paper-tape punch.

Usage
DCL P1lOU entry(fixed bin(15)):

CALL P10OU (char):;

Parameters
char

INPUT. The character being written to paper tape.

Discussion
Zero the high-order bit before punching. No special action is taken on
Carriage returns or Line feeds.
Note
Data items used by the routines CNIN$, TNOU, TNOUA, TOVFDS,
T1lIiB, T10B, T1IN, T1QU, TIDEC, TIOCT, TIHEX, TODEC, TOOCT,

TOHEX, TONL, P1IB, P10OU, AND PlIN must be halfword-aligned.
Refer to P1lIB for a FORTRAN example.

Loading and Linking Information

FTNLIB - R-mode

NPFTNLB -—- V-mode (unshared)

PFTNLB - V-mode

SVCLIB — R-mode (maintained for PRIMOS-II)
First Edition 6-20

J)

)

7
Other Peripheral
Devices

This chapter describes subroutines that control line printers,
printers/plotters, card readers, and magnetic tapes. These subroutines
are used for both formatted and raw data. Not all are in IOCS. Table
7-1 gives a list of the subroutines in this chapter.

LINE PRINTER SUBRQUTINES

IOCS contains subroutines to control three types of line printers:

e O3AL0O4 to print on a Centronics line printer connected to the
System Option Controller (SOC):;

e OSALO6 to print on a parallel-interface line printer connected
to the MPC Line Printer Controller;

e O3$AL14 to print on a Versatec Printer/Plotter connected to a
Versatec-SOC.

This section also includes SPOOL$ and SP$REQ for queuing files to be
printed, and TS$LMPC to move data to the MPC line printer.

7-1 First Edition, Update 1

SUBROUTINES,

VOLUME IV

Table 7-1
Peripheral-handling Subroutines

Line Printers

OS$SALO4 Centronics LP.

0OS$ALO6 Parallel interface to line printer (MPC).
O$AL14 Versatec printer.

T$LMPC Move data to LPC line printer.

SPOOLS Insert a file in spooler queue.

SPS$REQ Insert a file in spooler queue.
Printer/Plotter

0O$AL14 Versatec.

TSVG Versatec.

Card Reader/Punch

ISACO3
ISACO09
ISACLS
TS$CMPC
0S$AC03
0$AC15
T$SPMPC

Magnetic

Input from parallel card reader.

Input from serial card reader.

Read and print card from parallel interface reader.
Input from MPC card reader.

Parallel interface to card punch.

Parallel interface to card punch and print on card.
Raw data mover.

Tape

CS$MO5
C$M10
CsM11
CSM13
0S$AMO5
0SAM10
ISAMOS
ISAM1O0
O$BMO5
0$BM10
ISBMOS
I$BM10
0$aM11
0$AM13
ISAM11
I$AM13
TSMT

Control functions for 9-track ASCII/binary (obsolete).
Control functions for 7-track ASCII/binary (obsolete).
Control functions for 7-track EBCDIC (obsolete).
Control functions for 9-track EBCDIC (obsolete).
Write ASCII to 9-track (obsolete).

Write ASCII to 7-track (obsolete).

Read ASCII to 9-track (obsolete).

Read ASCII from 7-track (obsolete).

Write binary to 9-track (obsolete).

Write binary to 7-track (obsolete).

Read binary from 9-track (obsolete).

Read binary from 7-track (obsolete).

Write BCD to 7-track (obsolete).

Write EBCDIC to 9-track (obsolete).

Read BCD from 7-track (obsolete).

Read EBCDIC from 9-track (obsolete).

Raw data mover.

Caution

R-mode subroutines can be called from FTN and PMA in R-mode
only. If you call an R-mode routine from a program in a
different mode, the results are unpredictable.

First Edition, Update 1 7-2

N

9y

OTHER PERIPHERAL DEVICES

O$ALO4 or OS$ALO6

PUIEOSG

Both these subroutines provide an interface to the line printers. The
two use identical subroutine calling formats, and therefore have a
Usage description below as O$ALxx, where xx is replaced by the numbers
of the subroutine required. However, O$AL04 is for the serial line
printer, and must be called by a program using R-mode (either an FTN or
PMA program) while O$ALO6 is for the MPC line printer.

OSALl14 is discussed separately below.

Usage

DCL O$ALXX ENTRY (FIXED BIN(15), CHAR(*) VARYING, FIXED BIN(15),
FIXED BIN(15)):

CALL OSALXX (physical_unit, buffer, count, altrtn);

Parameters
physical_unit

INPUT. Indicates the line printer unit number, with the following
possible values:

0 PRO, first controller
1 PR1l, first controller
2 PR2, second controller
3 PR3, second controller

buffer
INPUT. The name of the buffer where the text to be printed
resides. Print text is placed in the buffer, two characters per
halfword.

count

INPUT. The number of 16-bit halfwords of data to be printed.

7-3 First Edition, Update 1

SUBROUTINES, VOLUME IV 0$AL04 or OS$SALO6

altrtn

INPUT. An optional parameter, used if O$ALxx encounters an error.
If an error occurs, control passes to the area within the calling
program named by this parameter.

Discussion

For more information on arguments, see Chapter 5.

Printer Control: The action taken by O$ALxx depends on the data in the
buffer, and the current vertical control mode. Certain characters
within the data control the manner in which the data is printed. These
characters (codes) are described in the following paragraphs.

Vertical Control Modes: O$ALxx has three vertical control modes:

e Forms control
e Header line and pagination control
e No-control

O$ALxx checks the first character in the data buffer for a .SOM. or
start-of-message character (ASCII ‘001). This character signifies a
change in the control mode. If the first character in the buffer is
not .SOM., the 1line is printed according to the current control mode.
The default mode is forms control.

Forms Control Mode: The first character in the buffer is not printed;
instead, it 1is wused for forms control. Two different forms control
modes exist, one for FORTRAN and one for COBOL, as described below.

First Edition, Update 1 7-4

J

BN

)

OS$ALO04 or OSALO6 OTHER PERIPHERAL DEVICES

FORTRAN Mode

FORTRAN mode allows the attaching of vertical format information to
each line of the data file. The first character position of each
line from the file does not appear in the printed output, and is
interpreted as shown below.

Character Meaning
1 Eject to top of next page.
+ Print over previous line.
space Advance one line.
0 Advance two lines.

- Advance three lines (skip two lines).

All other characters are interpreted as advance one line.

COBOL Mode

COBOL mode is identical to FORTRAN mode except that the format
information occupies the first two character positions of the line.
The first character is the same as for FORTRAN mode and the second
character is ignored.

Header Line and Pagination Control Mode: In header line and pagination
mode, OSALxXX causes a header 1line to be printed, followed by three
blank lines, followed by 38 text lines. The header line consists of up
to 43 characters followed by a page count that is generated by OS$ALxx
when printing in this mode.

For O$ALO6 and OS$SALl4, enter pagination mode with a first halfword of
000001 in buffer. In pagination mode with 0$AL04, a form feed (octal
14 or 214) may be anywhere in the buffer 1line. All characters
preceding the form feed are printed, and all characters after it are
ignored. With O$ALO4, the form feed must be in column 1 or 3.

No-control Mode: In No-control mode, no actions are taken by OS$ALxx.

A line containing an ASCII Form feed character (FF, '214) causes the
line preceding it to print, followed by a page eject. Carriage return
(CR, ’215) causes the line preceding it to print with no line spacing.
Line feed (LF, ‘212) causes the line preceding it to print followed by
a line spacing operation. Any characters following a CR, LF, or FF are
ignored.

7-5 First Edition, Update 1

SUBROUTINES, VOLUME IV OSALO04 or O$ALO6

Change of Mode Commands: Any data buffer beginning with a .SOM.
character causes OSALXX to take some action to change control mode.
The control mode change is determined by the character following the
.SOM., and is activated when a file is printed. The character
interpretations are:

000 Enter no-control mode.

001 Enter control mode.

036 New header line - DO NOT reset page count.
037 Enter new page size specified by the 16-bit

number contained in the next computer halfword.

Any Other Enter header control mode characters.

Early Buffer Termination: A line feed (LF, ’‘212) character terminates
the print line in the buffer, regardless of the count parameter.

Load Information: O$AL0O4 calls no other subroutines. OSALO6 calls
TSLMPC.

Loading and Linking Information

For OSALO4:
FTNLIB - R-mode
For OSALOG6:
FTNLIB - R-mode
NPEFTNLB - V-mode (unshared)
PFTNLB - V-mode
First Edition, Update 1 T7-6

J I

J

D)

OTHER PERIPHERAL DEVICES

TSLMPC

Purpose

TSLMPC is a raw data mover, moving information from the user to one
line on the MPC line printer.

The user normally prints 1lines wunder program control using either

FORTRAN WRITE statements or a call to O0$AL06, which in turn calls
TSLMPC. However, it is possible to call T$LMPC directly.

Usage

DCL TSLMPC ENTRY (FIXED BIN(15), PTR, FIXED BIN(15),
FIXED BIN(15), FIXED BIN(31)):

CALL T$LMPC (logical_unit, addr(buffer), count,
instr, status):

Parameters

logical_unit
INPUT. Line printer unit.

addr (buffer)
INPUT. A pointer to the buffer holding information to be printed
on the line printer. Information is expected to be packed two
characters per halfword.

count
INPUT. Number of halfwords to print on the current line.

instr

INPUT. The instruction required by the 1line printer. Valid
instructions are:

Instruction (Octal) Meaning
7100000 Read status.
740000 Print a line.
20012 Skip a line.
7-7 First Edition, Update 1

SUBROUTINES, VOLUME IV TS$LMPC
Instruction (Octal) Meaning
r20014 Skip to top of page.
£20100-20113 Skip to tape channel 0-11.
r20120-20137 Skip from 1 to 15 lines.
status

OUTPUT. A three-halfword vector that contains device code, status
of printer, and a space. Possible printer status is:

Octal Value Condition
7200 Online
7100 Not busy

Discussion

Under PRIMOS, line printer output is buffered. If T$LMPC is called and
the buffer is full, the user is placed in output-wait state. Later,
when the buffer is no longer full, the user 1is rescheduled, and the
TSLMPC call is retried. The user may issue a status-request call to
check if the buffer is full. If the buffer is full, then the not-busy
status is reset. Using this feature, a user program may check that the
buffer is not full, then output one line, or do another computation if
the buffer is full. Under PRIMOS 1II, output is not buffered, and
control does not return to the user until printing is complete.

Loading and Linking Information

FTNLIB - R-mode

NPFTNLB -- V-mode (unshared)

PFTNLB - V-mode

SVCLIB - R-mode (maintained for PRIMOS-II)
First Edition, Update 1 7-8

J

J

J

R

Y)

OTHER PERIPHERAL DEVICES

SPOOLS$

Purpose

SPOOLS accesses the spool queue.

Usage

DCL SPOOL$ ENTRY (FIXED BIN(15), CHAR(*), FIXED BIN(15), CHAR(80),
CHAR(*), FIXED BIN(15), FIXED BIN(15)):;

CALL SPOOL$ (key, name, namlen, info, buffer, buflen, code);

Parameters
key

INPUT. Indicates a user option. Possible values are:

1 Copy named file into queue. The name argument holds the
pathname of the file to be queued as a fixed-length
string.

2 Make a queue entry and open a data file on the file unit
given in info(2). This gives the program write access

to the file for printing, but the program loses control
of the file when it is closed.

3 Modify the spool queue entry identified by the request
number in info(8-10). This queue entry must belong to
the calling user or a user who has privileged queue
access rights.

4 Close the file on unit info(2), update the queue entry
for that request number, (in elements 8 -10 of info), to
record the file size, and reactivate a local despooler
that matches the request attributes.

name

INPUT. 1If key is 1, indicates the pathname of the file to be
queued. If key is 2, indicates the name to appear on the header

page.

7-9 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

namlen
INPUT. Length of name, in characters. If key is 1, name can be
from 1 to 160 characters. If key is 2, name can be from 0 to 32
characters.

info

INPUT. Information array of 40 16-bit halfword elements, as

follows:

1 Reserved.

2 If key is 2, open print file on this unit. A value of 0
implies that SPOOL$ should select a free file unit.
This halfword returns the number of the file unit
opened.

3 Print option halfword. Specifies printer and plotter
information, as shown below. Corresponding PRIMOS
command level options appear in parentheses.

Bit Meaning
1 Use FORTRAN-format mode (-FTN). Column 1 of
each data line holds a format control
character; the printed data starts in column
2. Refer to the Forms Control Mode section of
the 0$AL04 or OSALO6 description earlier in
this chapter for a list of these codes.
2 Reserved.
3 Generate line numbers at left margin (-LNU).
4 Suppress header page (-NOH).
5 Suppress final page eject after printing
(-NOE) .
6 Suppress format control mode (-NOF).
7 Use raster plot mode (-PLOT). info(7) is the
raster size.
8 Defer printing to time specified in info(11)
(-DEFER) .
9 Reserved.
10 Use the logical destination name specified in
info (13-20).
First Edition, Update 2 7-10

4 J

J J

5 9

Y

SPOOLS

11

12

13-20

OTHER PERIPHERAL DEVICES

11 Replace name with info(21-28) (-AS).

12 Spool the number of copies specified in
info(29) (-COPIES).

13 Use COBOL-format mode (-COBOL). This is
identical to FORTRAN-format mode except that
the data to print begins in column 3 of each
line. Refer to the Forms Control Mode section
of the 0%AL04 or O0S$ALO6 description earlier in
this chapter for a description of these codes.

14 Suppress page header format. This is
identical to the default print format
(pagination mode) except that the normal
header line on each page is omitted.

15 Inform user when printing is done (-NOTIFY).

16 Extended array used. This bit must be set if
any of the control bits in info(30-40) are
used.

Form type; 6 ASCII characters, blank filled (-FORM).
This field is treated as a device attribute when adding
or modifying a request in a Rev. 21 spool queue.

Plot raster scan size (plot only). This represents the
number of halfword/raster scan.

If key is 3 or 4, input the request number to be
modified or closed as a decimal string (use of the
prefix PRT, while still supported at Rev. 22, 1is not
recommended) . For other keys, returns the request
number of the new spool queue entry.

Deferred print time as a binary value of minutes past
midnight (-DEFER). If the time given is earlier than
the current time, the request is deferred to the given
time on the following day. Significant only if bit 8 of
info(3) is set.

Size of request, returned if key is 1. This is the size
of the file, in records, multiplied by the number of
copies to be printed; 32767 is the maximum size.

Logical destination name when key is 1, 2, or 3, blank
filled (-ATT). Significant only if bit 10 of info(3) is
set. This field is treated as a device attribute when
adding or modifying a request in a Rev. 21 spool queue.

7-11 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

21-28

29

The remaining
array 1is used,

Substitute filename to be used in banner page, blank
filled (-AS). Significant only if bit 11 of info(3) is
set.

Number of copies to print when key is 1, 2, or 3
(-COPIES). Significant only if bit 12 of info(3) is
set. If this bit is not set, only one copy is printed.

11 elements are for the extended array. If the extended
bit 16 of info(3) must be set.

30 Extended print option halfword, with bit descriptions as
shown below.
Bit Meaning

1 Use spool queue on disk identified by info(31)
(-DISK) .

2 If key is 1, 2, or 3, treat request as
priority (-RUSH). Only privileged users can
use this bit.

3 If key is 3, cancel priority of request. Only
privileged users can use this bit.

4 Reserved.

5 Use spool queue on network node identified by
info (35-37) (-ON).

6 Suppress file information on header page
(-SFI).

7 Truncate lines 1longer than defined printer
width (-TRU).

8 If key is 3, cancel defer time.

9 Inhibit overprinting (-NOP, -CRLF).

10 Use PostScript procedure named in info(32-34)
(-PROC) .

11 If key is 1, suppress copying of data file
(-NOCOPY) .

12-16 Reserved.

First Edition, Update 2 7-12

J J

J J

9

-

3

OTHER PERIPHERAL DEVICES

31 Logical disk number of disk holding spool queue to which
request is to be added. Significant only if bit 1 of
info(30) is set. If the disk is on the local system,

the disk information is ignored and the request is added
to the local queue. If the disk is on a remote system
and holds a pre-Rev. 21 spool queue, the request will be
added to that queue. If the disk is on a remote system
but does not hold a pre-Rev. 21 spool queue, the spooler
will attempt to add the request to a Rev. 21 gqueue on
the remote system.

32-34 PostScript procedure name for laser printers supporting
the PostScript 1language. Significant only if bit 10 of
info(30) is set.

35-37 Name of network node on which the spool queue is to be
accessed (-ON). Significant only if bit 5 of info(30)
is set. A single call to SPOOLS cannot specify both a
disk and a node name.

38-40 Reserved.

buffer
SCRATCH. 1If key is 1, this is the data buffer area used to copy
the file. It is used as both an input and output buffer, and must
be at least 40 16-bit halfwords long. Copy time is inversely
proportional to buflen size.

buflen

INPUT. Length of buffer in halfwords. This should be at least 300 |
halfwords. A multiple of 1024 gives the best performance.

code

OUTPUT. Standard error code.

7-12a First Edition, Update 1

SUBROUTINES, VOLUME IV

Loading and Linking Information

V-mode and I-mode: Load VSPOOS$.BIN
Code in SPSLIB.RUN.

V-mode and I-mode with unshared libraries: Load VSPOO$.BIN.
Code in SPSLIB.RUN.

R-mode: Not available.

First Edition, Update 1 7-12b

) I

J)

)

AR |

OTHER PERIPHERAL DEVICES
SP$SREQ

Purpose

SPSREQ places a file in a spool queue and handles requests issued with
the SPOOL command.

Usage

DCL SPSREQ (CHAR(1024) VAR, FIXED BIN(15), ENTRY(CHAR(*), FIXED
BIN(15)), FIXED BIN(31), FIXED BIN(15), FIXED BIN(1l5)):

CALL SPS$REQ (in_string, op_mode, entry_var, rgst_no, ret_info, code):

Parameters
in_string
INPUT. Command argument string composed of the same arguments as
those applicable to the SPOOL command. FORTRAN programmers can
build the string from a structure of fixed-length substrings. Any
number of spaces is permitted between arguments in this string.
op_mode
INPUT. Output mode. Possible values are:
0 Normal terminal output.

1 No terminal output (for most program call uses).

2 Output via supplied routine (for applications requiring
special treatment of output).

entry_var

INPUT. Entry required when op_mode is 2. The entry variable must
refer to a routine with a calling interface with a fixed character
string and a bin(15) byte count. The string must never exceed 80
characters. If op.mode is 0 or 1, this argument is ignored. Refer
to the Discussion section for more information about this argument.

7-12¢ First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/0

rgst_no

OUTPUT. Returned request number from operations that add a new
request to the spool queue.

ret_info
OUTPUT. Returned information, depending on action requested. When
a file is copied to the queue, this argument returns the total size
of the request (file size multiplied by the number of copies).
When a file is opened with the -OPEN option, this argument returns
the file unit number. For all other actions, the argument is
ignored.

code

OUTPUT. Standard error code.

Example
The following PL/I statement shows how to call SP$REQ. Because op_mode

is 0, the terminal displays any error message text. The reference to
TNOU is optional in this case.

CALL SP$REQ (‘FILEl -ftn -cop 2', 0, TNOU, reqno, file_size, code):

Discussion

SPSREQ handles all user requests issued with the SPOOL command, as
well as any requests by user programs to place a file in the spool
queue. If op mode is 0 or 1, entry var can be 0.

SPSREQ interprets control codes embedded in files when queued entries
are printed. Possible control codes are shown below.

First Edition, Update 2 7-12d

J J

J J

S)

AR |

000 000 header

000

001

001

001

001

001

001

001

002

002

002

002

002

002

003

Character

header

000

001

002

003

004

005

036

001

002

003

004

005

006

n

text

OTHER PERIPHERAL DEVICES

Interpretation

Set a new page header and reset the page number
count. The header string is supplied after the
two-byte code. This forces pagination mode and
causes a page eject. Margins are reset to
their default values, as defined in the
environment file.

Same as above.

Enter no-format mode.

Enter FORTRAN-format mode.

Enter COBOL-format mode.

Enter pagination mode.

Enter no-header mode. This is the same as
pagination mode, except that no page header is
printed.

Enter raster plot mode. The following
characters hold a decimal count of words to

print.

Same as 000 001, except that the page counter
is not reset.

Set left margin to column number given as a
decimal string after code.

Set right margin to column number given as a
decimal string after code.

Set top margin to line number given as a
decimal string after code.

Set bottom margin to line number given as a
decimal string after code.

Wrap around text if line exceeds paper width.
Truncate lines that exceed paper width.

Skip to EVFU channel defined by second byte.
(n) must be in the range of 1 to 12 inclusive.

7-12e First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

002 000 text Set the printer characteristics as specified
by text, which may be in mixed cases. The
possible values of text are:

SET_PORTRAIT

SET_LANDSCAPE

SET_PAPER _BIN n

SET_FONT fontname

Loading and Linking Information

V-mode and I-mode with unshared

R-mode: Not supported.

First Edition, Update 2

7-12f

Print paper in portrait.

A printer is printing

in portrait when it prints
text across the shorter
width of the paper.

Print paper in landscape.
A printer is printing in
landscape when it prints
text across the longer
width of the paper.

For laser printers or other
printers that use more than
one paper bin. Selects the
paper bin specified by n,
where n can range from

1 - 9. Manual feed of
paper is supported by
MANUAL.

Select the font specified by
fontname, where fontname

is a string of up to 32
characters. The string
cannot contain spaces.

libraries: Load VSPOOS .BIN.

Code in SP$LIB.RUN.

J J

J J

DA

3

SUBROUTINES, VOLUME IV

PRINTER/PLOTTERS

The printer/plotter subroutines are used to drive and control the
Versatec printer/plotter. The subroutines are 0$AL14 and TS$VG.

7-12g First Edition, Update 1

SUBROUTINES, VOLUME IV

First Edition, Update 1

7-12h

J.)

M)

O$AL14

Purpose

0$AL14 provides the
O$AL14 is in R-mode
the Usage descriptio

Usage
INTEGER*2 unit
INTEGER*2 buffer
INTEGER*2 hwcnt
INTEGER*2 altrtn

CALL OS$ALl14 (unit, b

Parameters
unit

INPUT. Indicate
possible values:

0 PRO,

1 PR1,

2 PR2,

3 PR3,
buffer (1)

INPUT. The name
Handling of the

OTHER PERIPHERAL DEVICES

IOCS interface to the Versatec printer. Because
only, the calling program must be either FTN (as in
n below) or PMA.

(1)

uffer(l), hwent, altrtn)

s the line printer unit number, with the following

first controller
first controller
second controller

second controller

of the array from which data is to be moved.
buffer turns on the first character in the buffer.

See Discussion below.

hwent

INPUT. Number of halfwords to be transferred.

altrtn

INPUT. A parameter not used by this routine, but maintained for

coding purposes.

7-13 First Edition

SUBROUTINES, VOLUME IV OSAL14

Discussion

The action taken by O$AL14 depends upon the data in the buffer and the
current vertical control mode (first character of buffer).

OSALl14 has three vertical control modes:
1. Forms control
2. Header line and pagination control
3. No-control
The default mode is forms control. OS$ALl4 checks the first character

in the data buffer for a .SOM. (ASCII ’001). This character signifies
a change in the control mode.

If the first character is a .SOM., 0$ALl14 makes a change in control
mode, determined by the character following the .SOM.:

000 Enter no-control mode.

001 Enter control mode.

036 New header line but do not reset page count.

037 Enter new page size specified by the 16-bit number

contained in the next computer halfword.

All others Enter header control mode.

When entering header control mode, the characters following the .SOM.
are stored internally in O$AL14 for use as the header line.

All change of mode commands cause a page eject before any further
action.

If the first character is not a .SOM., the line is printed according to

the current vertical control mode. These three mode descriptions
follow.
First Edition 7-14

I J

J

)

A

OSAL14 OTHER PERIPHERAL DEVICES

Forms Control: In this mode, the first character in a buffer is never
printed but is used for forms control. The character interpretations
are:

0 Skip one line.

1 Eject to top of next page.

+ Print over last line (if printer model allows).
Other No action.

Header Line and Pagination: 1In this mode O$AL14 permits a header line

followed by three blank lines, followed by 56 text lines. The header
line 1is 42 characters followed by a page count which is kept
automatically by O$AL14 when in this mode.

No-control: 1In this mode no automatic actions are taken except that

any line containing a form-feed character will cause a page eject with
no further action.

Load information: This subroutine calls T$VG.

Loading and Linking Information

FTNLIB - R-mode
SVCLIB - R-mode (maintained for PRIMOS-II)

7-15 First Edition

SUBROUTINES, VOLUME IV
TSVG

Purpose

T$VG moves raw data from a buffer and prints the data on the Versatec
printer via a controller designed for wuse with the Versatec
printer/plotter.

Usage

DCL T$VG ENTRY(FIXED BIN(15), PTR, FIXED BIN(15),
FIXED BIN(15), FIXED BIN(31));

CALL T$VG (physical_unit, addr(buffer), nhwds,
instruction, status):

Parameters
physical-unit

INPUT. Currently always 0, since the controller supports only one
device.

addr (buffer)

INPUT. Pointer to the address of user’s buffer.
nhwds

INPUT. The number of halfwords in the buffer. The maximum is 512.
instruction

INPUT. A number from O to 10 that specifies an action that the

device is to take. These instructions are described in detail in
the Discussion that follows.

status
OUTPUT. A two-halfword array. Device status is returned in
status(2). status 1is returned only on a status request
instruction.

First Edition 7-16

) J

)

D

TSVG OTHER PERIPHERAL DEVICES

The interpretation of the bits that are set in status(2) is as

follows:
Bit Meaning
1 Always O.
2 If set (=1), then paper is low.
3 If reset (=0), then printer/plotter is ready.
Otherwise, printer/plotter is not ready.
4 If reset (=0), printer/plotter is online.
Otherwise, printer/plotter is offline.
5-16 Always O.
Discussion

Printer/Plotter Instructions: The instruction parameter supplies data

affecting forms control and mode control (Print mode, Plot mode,
Simultaneous Print/Plot mode), as follows:

0 Return printer/plotter status in status(2). The
contents of the status vector, status, are described
in the calling sequence description. TSVG waits
until the output buffer is empty or until there is a
timeout before returning status.

1 End-of-transmission. This instruction initiates a
print cycle and a paper advance. If the paper on
the printer/plotter is installed in roll form, this
roll is advanced eight inches; if the paper is
fanfolded, it is spaced to the top of the next form.

2 Reset. The reset instruction clears the buffer and
initializes all logic in the printer/plotter.

3 Form feed. The form feed initiates a print cycle
and a paper advance.

If the paper on the printer/plotter is installed in
roll form, the paper is advanced 2-1/2 inches; If
the paper is fanfolded, it is advanced to the top of
the next form.

4 Clear buffer.

5 Reserved.

7-17 First Edition

SUBROUTINES, VOLUME IV TS$VG

6 Print the contents of buffer. (Print mode only --
see below.)

7 Make a plot, using the contents of buffer. (Plot
mode only -- see below.)

8 Simultaneous print/plot PRINT. (SPP mode only --
see below.)

9 Simultaneous print/plot PLOT. (SPP mode only -- see
below.)

10 Return status of output queue in status(2.) If

there is no room for the number of halfwords
specified by the parameter nhwds, set status(2) to
0. If there 1is room for the number of halfwords
specified by nhwds, set status(2) to a nonzero
value.

Print Mode: The Versatec printer/plotter may be operated as if it were
a line printer. The printer/plotter accepts 6- or 8-bit ASCII code.
Control commands are transmitted by using the instructions described
for the calling sequence or by transmitting the following ASCII control
codes:

ASCII Code

(Octal) Meaning

004 End of transmission.

r014 Form feed.

012 Line feed. The transmission of the (LF) code causes
a print cycle and a paper advance of one line,
except when the 012 code follows either the printing
of a full buffer or a carriage return (015).

015 Carriage return. A (CR) code causes a print cycle

and a paper advance of one line, provided the buffer

has at least one character entered and provided the
buffer is not full.

When the 8-bit (128-character) ASCII character set is used, there are
no ASCII control codes.

Plot Mode: The printer/plotter performs plot operations that are
standard to all printer/plotter devices connected via the controller to
the Prime computer. Plot data consists of 8-bit, binary, unweighted
bytes. Each dot that is plotted at the printer/plotter corresponds to
a single bit in the buffer. If bit is 1, a black dot is plotted at the

First Edition 7-18

J

)

TS$VG OTHER PERIPHERAL DEVICES

point corresponding to the bit position in the buffer. Bit 1 of a
memory halfword (2 bytes) is the most significant (leftmost) bit, and
bit 16 of memory halfword is the least significant (rightmost) bit.

Simultaneous Print/Plot (SPP) Mode: SPP mode operation permits direct
overlay of character data which 1is generated by an internal matrix
character generator, with plotting data, which is generated on a
bit-to-dot correspondence. The SPP mode is an optional feature on some
printer/plotters. The SPP process makes use of both a print buffer and
a plot buffer, both specified in calls to T$VG. For example, using the
Versatec Printer/Plotter Model 1100A in SPP mode, the SPP operation
consists of first, placing up to 132 ASCII characters in the PRINT
buffer (Instruction = 8); and then placing 128 bytes of plot data in
the buffer (Instruction = 9) ten times. When the plot data is
transmitted to the printer/plotter, the plot buffer is scanned, and a
single row of dots, corresponding to the binary content of the plot
buffer, is printed. During the scanning process, the print buffer is
also scanned. The corresponding dots of each print character are OR’d
with the plot buffer output:; thus an overlay is formed consisting of
the printed and plotted data. Since the vertical height of an ASCII
character for the Model 1100A Printer/Plotter is ten raster scans, the
user must make ten calls to plot data before the print buffer is
completely printed and ready for new data. Table 7-2 shows the number
of raster scans per print line for the various models of Versatec
printer/plotter optionally available with Prime computer
configurations.

Loading and Linking Information

FINLIB - R-mode

NPFTNLB -- V-mode (unshared)

PFTNLB - V-mode

SVCLIB - R-mode (maintained for PRIMOS-II)

Caution

For SPP mode, do not attempt to transfer more than the maximum
number of characters to the print buffer.

SPP mode requires a series of calls to the T$VG driver. For
instance, in the example given, each print instruction was
followed by ten plot instructions. Do not interrupt such a
sequence with other instructions, because printer/plotter
output will be incorrect.

7-19 First Edition

SUBROUTINES,

Maximum Buffer Length for Versatec Printer/Plotters

VOLUME IV

Table 7-2

TS$VG

PRINT
PLOT No. Scans/Print Lines

Model Bits Bytes Chars. 64 Chars. 96 or 128 Chars.

220a 560 70 80 (70 in spp) 8 10

1100a 1024 128 132 10 12

1600a 1600 200 100 20 20

2000a 1856 232 232 10 12

2160a 2880 360 180 20 20

First Edition

J)

)

OTHER PERIPHERAL DEVICES

CARD PROCESSING SUBROUTINES

Card-reader subroutines drive and control serial and parallel interface
card readers.

Card Reading Operation: The user must insert the card deck in the card
reader and give the command:

ASSIGN CRn
n =0 or 1 for the device sub-unit number

The user then fills the input buffer from the card reader by calling
one of the following subroutines:

e ISAC03 or ISAClS for parallel interface cardreaders

e ISAC09 for serial interface cardreaders

e TSCMPC or TSPMPC (from the operating system library)
Normally a user does not call these directly, but instead calls
an IS$Axx subroutine, which itself calls a T$xxxx subroutine.

The user may issue a status request call to check if the input buffer
is empty. If the buffer is empty, the online status bit (bit 9 in the
status word) is reset.

These card-reading subroutines, as well as the card-writing subroutines
and card-code-translator subroutines, are described on the following
pages.

Note

Under PRIMOS II, the card reader is never offline.

7-21 First Edition

SUBROUTINES, VOLUME IV

ISACO03

Purpose

Reads ASCII input from the parallel interface card reader. Because
this subroutine 1is in R-mode only, the calling program must be either

FTIN (as in the Usage description below) or PMA.

Usage

INTEGER unit
INTEGER buffer (1)
INTEGER hwent
INTEGER altrtn

CALL ISACO03 (unit, buffer(l), hwent, altrtn)

Parameters
unit
INPUT. The physical unit, or device, from which data is
moved:
0 CR0O, first controller
1 CR1, second controller
buffer (1)

OUTPUT. Name of data area to receive input from card reader.

hwent
INPUT. Number of halfwords to be transferred.

altrtn

INPUT. Alternate return for FORTRAN programs calling
subroutine in case of end of file or other error.

First Edition 7-22

to be

this

J)

M)

ISACO3 OTHER PERIPHERAL DEVICES

Discussion

Card Format: Cards are expected to be in 029 format. ‘026’ cards may

be read by preceding the deck by a card containing ’$6’ in columns 1
and 2. The conversion done for 026’ cards is shown below.

Card Code Converted to
(026 Symbol) (Character)

4 =
% (
<)
@ ;
' +

The driver can be switched back to '029’ format by ’$9’ in columns 1
and 2.

Load Information: This subroutine calls T$CMPC.

Loading and Linking Information

FTNLIB - R-mode
SVCLIB - R-mode (maintained for PRIMOS-II)

7-23 First Edition

SUBROUTINES, VOLUME IV

ISACO09

Purgose

The subroutine I$AC09 reads ASCII input from a serial interface card
reader.

Usage

INTEGER*2 unit
INTEGER*2 buffer(l)
INTEGER*2 hwcnt
INTEGER*2 altrtn

CALL ISAC09 (unit, buffer, hwcnt, altrtn)

Parameters
unit

INPUT. The physical wunit, or device, from which data is to be

moved:
0 CRO, first controller
1 CR1l, second controller
buffer (1)

QUTPUT. Name of data area to receive input from card reader.
halfword-count

INPUT. Number of halfwords to be transferred.

altrtn

INPUT. Alternate return for FORTRAN programs calling this
subroutine in case of end of file or other error.

First Edition 7-24

))

M)

ISACO09 OTHER PERIPHERAL DEVICES

Discussion

ISACO09 translates card codes to characters in memory as follows:

Card Code Converted to
(026 Symbol) (Character)

=
% (
<)
+ \
' +
@ .

Card codes read are either 026 or 029. The last card in the deck is

Q..
Errors: The ERRVEC(3) may have the following octal values. (See
Appendix B for a discussion of ERRVEC.) Combinations are possible.
r200 Online
40 Illegal ASCII
r20 DMX overrun
r4 Hopper empty
r2 Motion check
it Read check
Load Information: TIS$AC09 calls FSAT to fetch the arguments.
Loading and Linking Information
FTNLIB - R-mode
SVCLIB - R-mode (maintained for PRIMOS-II)
7-25 First Edition

SUBROUTINES, VOLUME IV

ISAC15

Purpose

Reads and interprets (prints) a card from a parallel interface card
reader. Because this subroutine is R-mode only, the calling program
must be either FTN (as in the Usage description below) or PMA.

Usage
INTEGER*2 unit
INTEGER*2 buffer (1)
INTEGER*2 hwcnt
INTEGER*2 altrtn

CALL ISAC15 (unit, buffer(l), hwcnt, altrtn)

Parameters
unit
INPUT. The physical unit, or device, from which data is to
be moved:
0 CRO, first controller

1 CR1, second controller

buffer(l)

QUTPUT. Name of data area to receive data from card reader.
hwent

INPUT. Number of halfwords to be transferred.
altrtn

INPUT. Alternate return for FORTRAN programs calling this
subroutine in case of end of file or other error.

First Edition 7-26

J

J

‘

3

D)

ISAC15

Discussion

Load Information:

OTHER PERIPHERAL DEVICES

This subroutine calls T$PMPC.

Loading and Linking Information

FTNLIB —— R-mode
SVCLIB - R-mode (maintained for PRIMOS-II)

7-27 First Edition

SUBROUTINES, VOLUME IV

T$CMPC

Purpose

The TSCMPC routine is the raw data mover that transfers information on
a card from the MPC card reader to the user’s space. TS$CMPC is called
by the IOCS card-reader driver I$AC03. The user normally reads cards

under program control using either FORTRAN READ statements or a call to
ISAC03. However, it is possible to call TS$SCMPC directly.

Usage

DCL T$CMPC ENTRY(FIXED BIN(15), PTR, FIXED BIN(15), FIXED BIN(15),
FIXED BIN(31);

CALL TS$CMPC (physical_unit, addr(buffer), count, instr,
status);

Parameters
physical_unit

INPUT. Device from which data is to be moved:

0 CRO, first controller
1 CR1, second controller
addr (buffer)

INPUT. A pointer to a buffer that is to hold the information from
a card being read in the card reader.

count
INPUT. The number of halfwords to be read from the current card.
instr

INPUT. An octal-code instruction needed by the card reader. Valid
instructions are:

First Edition 7-28

))

J

A

TSCMPC OTHER PERIPHERAL DEVICES

Instruction Meaning

100000 (octal) Return status.

40000 (octal) Read card in ASCII format.
60000 (octal) Read card in binary format.
100001 (octal) Return status of hardware.

status
QUTPUT. A three-halfword vector:
status (1) Not used.

status (2) Card-reader status: If status is explicitly
requested by instr (7100000), this halfword returns a
value indicating the state of buffer (not of the
hardware). Otherwise the status bits returned are
defined as follows:

Octal Value Condition
200 Online
40 Illegal ASCII
20 DMX overrun
4 Hopper empty
2 Motion check
1 Read check

status (3) Number of halfwords moved.

Example: The following FORTRAN example reads an 80-character card of
ASCII data and places the contents in CARDS.

40 DO 70 T =1, 23
50 CALL T$CMPC (0, LOC(CARDS), 40, :40000, STATUS)

C Now, save "CARDS" contents,
Cc either by printing as line records (OS$SALxx, etc.)
C or by backing up the card deck (O$ACxx, etc.):
60 CALL O$xxxx./* ...But why not save on disk or tape?

70 CONTINUE

7-29 First Edition

SUBROUTINES, VOLUME IV

Loading and Linking Information

FTNLIB
NPFTNLB
PFTNLB -
SVCLIB

First Edition

R-mode
V-mode
V-mode
R-mode

(unshared)

(maintained for PRIMOS-II)

T$CMPC

))

)

Y

OTHER PERIPHERAL DEVICES

O$ACO03

Purpose
0$AC03 punches output to the parallel interface card punch. Because
this subroutine is in R-mode only, the calling program must be either
FTN (as in the Usage description below) or PMA.
Usage

INTEGER*2 unit

INTEGER*2 buffer(l)

INTEGER*2 hwcnt
CALL O$ACO3 (unit, buffer(l), hwcnt)
Parameters
unit

INPUT. Card punch sub-unit number:

0 CR0O, first controller
1 CR1l, second controller

buffer (1)

INPUT. Name of data area supplying output to be punched.
hwent

INPUT. Number of halfwords to be punched.
Discussion
Load Information: This subroutine calls T$PMPC.
Loading and Linking Information
FTNLIB -= R-mode
SVCLIB - R-mode (maintained for PRIMOS-II)

7-31 First Edition

SUBROUTINES, VOLUME IV

O$AC15

Purpose

Punches output to the parallel interface card punch and prints on card.
Because this subroutine is in R-mode only, the calling program must be

either FTN (as in the Usage description below) or in PMA.

Usage
INTEGER*2 unit
INTEGER*2 buffer(l)
INTEGER*2 hwent
INTEGER*2 altrtn

CALL OS$AC1l5 (unit, buffer(l), hwcnt, altrtn)

Parameters
unit

INPUT. Card punch sub-unit number:

0 CRO, first controller

1 CR1, second controller

buffer (1)

INPUT. Name of data area supplying output to be punched.
hwent

INPUT. Number of halfwords to be punched.
altrtn

INPUT. Alternate return for FORTRAN programs calling
subroutine in case of end of file or other error.

First Edition 7-32

this

))

)

OSAC15 OTHER PERIPHERAL DEVICES

Discussion

Load Information: This subroutine calls TS$PMPC.

Loading and Linking Information

FTNLIB - R-mode
SVCLIB —— R-mode (maintained for PRIMOS-II)

7

33 First Edition

SUBROUTINES, VOLUME IV

T$SPMPC

PUIEOSG

T$SPMPC is the raw data mover for the card punch. It is called by
O$AC03, OS$AC15, and ISAC1l5, the card punch drivers. These routines may
also be called by the user.

Usage

DCL TSPMPC ENTRY(FIXED BIN(15), PTR, FIXED BIN(15),
FIXED BIN(15), FIXED BIN(31)):;

CALL TS$PMPC (physical_unit, addr(buffer), count,
inst, status);

Parameters
physical_unit

INPUT. Device from which data is to be moved:

0 CR0, first controller
1 CR1, second controller
addr (buffer)

INPUT. A pointer to a buffer supplying the data output to the card
reader. Data is packed two characters per halfword. In binary
mode, card punches are mapped into a 16-bit halfword as follows:

Bit Punch Row
1-4 Not used
5 12
6 11
7-16 0-9

First Edition 7-34

J

DI

T$SPMPC

count

OTHER PERIPHERAL DEVICES

INPUT. The number of halfwords to punch on a card from buffer.

instr

INPUT. An instruction needed by the card punch. Instructions are:

Bit Set Instruction Meaning

1 7100000 Read status.

3 r20000 Process in binary mode.
4 r100C0 Feed a card.

5 4000 Read a card.

6 2000 Punch a card.

7 71000 Print a card.

8 400 Stack a card.

To punch a card, instr would be an octal 12400 meaning:

1.

2.

3.

status

Feed a card.

Punch a card.

Stack a card.

OUTPUT. Three halfword status vector:

status (1) Not used.

status (2) Device status returned for a read request (instr =

’4000) :
Value Condition
r200 Online
"4 Illegal code
10 Hardware error
"4 Operator intervention required

status (3) Number of halfwords read.

7-35 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

-~

MAGNETIC TAPES

The magnetic tape subroutines drive and control 7-track and 9-track -
magnetic tape devices. Their functions are summarized in Table 7-3.

Table 7-3
Functions of Magnetic Tape Subroutines

d-Track
CSMO05 Control for 9-track ASCII and binary.
C$M13 Control for 9-track EBCDIC.

0$AMOS5 Write ASCII.
I$AMO5 Read ASCII.

0$BMO0O5S Write binary. ‘\
ISBMO5 Read binary.

05AM13 Write EBCDIC.
ISAM13 Read EBCDIC.

7-Track
C$M10 Control for 7-track ASCII and binary.
CS$M11 Control for 7-track BCD.
0$AM10 Write ASCII. A\
ISAM10 Read ASCII.
O$BM10 Write binary.

ISBM10 Read binary.
0S$AM11 Write BCD.
I$AaM11 Read BCD.

Note
For descriptions of the subroutines listed in Table 7-3, see

Appendix E "Other Obsolete Subroutines”. The subroutine TS$MT
has replaced all of these subroutines except O$AM13 and ISAMI13.

First Edition, Update 2 7-36

) J

Sy)

OTHER PERIPHERAL DEVICES
TSMT

Purpose

The T$MT routine is the raw data mover that moves information from
magnetic tape to user address space, or from the user space to tape.
TSMT also performs other tape operations, such as backspacing, forward
spacing, and density setting. If T$MT is called without the code
argument, and an error condition is encountered, TS$MT exits to the user
command level, rather than to the calling program. If TS$MT is called
with the code argument, TS$MT returns the appropriate error code to the
calling program.

TSMT is used by several tape controllers. Table 7-4 gives version
numbers and controller IDs for the different drive types. Instructions
associated with particular versions are indicated in the Usage section
below.

Table 7-4
Controller Id

Version Device ID Controller # Drive Type

0 014 2081 Pertec

1 r114 2081 Kennedy, separate formatter

2 r214 2269/2270 Kennedy, two-board controller

3 314 2023 Telex(1600/6250 bpi)

4 7013 2301 Cipher Streamer (1600/3200 bpi)

5 113 2047 or 6105 DEI Cartridge Drive for 2250

6 r213 2382 60-Megabyte (QIC-02) cartridge
tape controller

- 7313 9610 Model 4587 quad-density tape drive

Note

The Version 6 cartridge tape controller performs a limited
sub-set of the normal tape drive functions for TS$MT described
below, as it 1is designed to provide inexpensive system backup
and data storage. See further comments on Version 6 under
instr and statv, especially for how TSMT handles invalid
commands to Version 6.

7-37 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

Usa

DCL

e

T$MT ENTRY (FIXED BIN(15), PTR, FIXED BIN(15),
FIXED BIN(15), 6 FIXED BIN(15){, FIXED BIN(15)1]):

CALL T$MT (physical_unit, buffno, nhw, instr, statv [, codel):

Parameters

physical_unit

INPUT. A sub-unit for this physical device, the magnetic tape
drive —- valid numbers are (logical drive numbers) 0 through 7.

buffno

nhw

INPUT. Location of the buffer from which to read or write a record
of information. It must be an octal number. If neither a read nor
a write operation, buffno is 0.

INPUT. Number of halfwords to transfer. This number must be
between 0 and 6K halfwords.

instr

INPUT. The instruction request to the magnetic tape drivers. The
following instructions are valid for all tape drivers, except where
noted.

Note

If one of the following instructions not valid for a QIC-02
drive is still submitted to a TS$MT call for that cartridge tape

controller, then T$SMT sets bit 6 in statv(2) - for
Uncorrectable Error -- and bit 13 in statv(4) -- for Illegal
Command. TS$MT then returns immediately without setting the
returned error code. (This is also true for a "Read record

backwards" instruction, the last instruction in the next list.)

Octal Hexadecimal Meaning of instr
000040 0020 Rewind to BOT, 7- or 9-track, or QIC-02.
022100 2440 Backspace one file mark, 9-track.

First Edition, Update 2 7-38

J J

J)

3

AR

TSMT

Octal Hexadecimal
020100 2040
062100 6440
060100 6040
022220 2490
020220 2090
062200 6480
060200 6080
022200 2480
020200 2080
100000 8000
042620 4590
042220 4490
042200 4480
042600 4580
052200 5480
052600 5580

OTHER PERIPHERAL DEVICES

Meaning of instr

Backspace one file mark, 7-track.
(Not valid for Model 4587.) I

Backspace one record, 9-track.

Backspace one record, 7-track.
(Not valid for Model 4587.) |

Write file mark, 9-track, and
QIC-02.

Write file mark, 7-track.
(Not valid for Model 4587.) |

Forward one record, 9-track, and
QIC-02.

Forward one record, 7-track.
(Not valid for Model 4587.) |

Forward one file mark, 9-track, and
QIC-02.

Forward one file mark, 7-track.
(Not valid for Model 4587.) |

Select transport, 7- or 9-track, or
QIC-02, and get status.

Write record, two characters per
halfword, 9-track, and QIC-02
(on QIC-02 the initial WRITE
requires up to two minutes).

Write record, one character per
halfword, 9-track.

Read record, one character per
halfword, 9-track.

Read record, two characters per
halfword, 9-track, and QIC-02.

Read and correct record, one
character per halfword, 9-track.
(Not valid for Model 4587.) |

Read and correct record, two
characters per halfword, 9-track.
(Not valid for Model 4587.) |

7-39 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

QOctal Hexadecimal

040220 4090
|

040620 4190
|

044220 4890
|

044620 4990
|

040200 4080
|

040600 4180
|

044200 4880
|

044600 4980
|

140000 C000

Meaning of instr

Write binary record, one
character per halfword, 7-track.
(Not valid for Model 4587.)

Write binary record, two
characters per halfword, 7-track.
(Not valid for Model 4587.)

Write BCD record, one character
per halfword, 7-track.
(Not valid for Model 4587.)

Write BCD record, two characters
per halfword, 7-track.
(Not valid for Model 4587.)

Read binary record, one character
per halfword, 7-track.
(Not valid for Model 4587.)

Read binary record, two charac-
ters per halfword, 7-track.
(Not valid for Model 4587.)

Read BCD record, one character
per halfword, 7-track.

(Not valid for Model 4587.)
Read BCD record, two characters
per halfword, 7-track.

(Not valid for Model 4587.)

Return controller id.

Note

The following instructions are valid only with certain versions

of tape controllers, as noted. If an instruction is submitted
to a controller that does not support it, TS$SMT returns an error
code of ES$IVCM (invalid command) in code.

Octal Hexadecimal

I 004020 0810

| 100020 8010

First Edition, Update 2

Meaning of instx

Erase from current position to EOT on
tape. (Model 4587 controller)

Erase a 3.5 inch gap on the tape

(version 2, 3, 4, or Model 4587
controller).

7-40

J

J J

DI

A

TSMT

Octal Hexadecimal
100040 8020
100060 8030
100100 8040
100120 8050
100140 8060
100160 8070
100200 8080
100220 8090
100240 80A0
100260 80BO
043500 4740
100300 80C0O
100360 80F0
100320 80DO0
100340 80EQ

OTHER PERIPHERAL DEVICES

Meaning of instr

Unload. Rewind tape and place drive
offline (version 2, 3, 4
or Model 4587 controller).

Set density to 800 bpi (version 2,
3, 4, or Model 4587 controller).

Set density to 1600 bpi (version
2, 3, 4, or Model 4587 controller).

Set density to 6250 bpi (version 2,
3, 4, or Model 4587 controller).

Set density to 3200 bpi
(version 2, 3, 4, or Model 4587
controller).

Set low speed (version 4
or Model 4587 controller).

Set high speed (version 4
or Model 4587 controller).

Re-tension tape (version
5 or 6 controller)

Erase entire tape (version 6 controller)
Go to end of data (version 6 controller)
Read record backwards (version 3
controller). As already noted,

Version 6 treats this as an invalid
instruction, handled like those

from the previous list.

Set drive default density (version
Model 4587 controller)

Select buffered mode. (Model 4587
controller)

Erase to EOT. (Model 4587 controller)

Select unbuffered mode (Model 4587
controller).

7-41 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

Note

In buffered mode, records can be lost when a write operation is
terminated abnormally. When the write operation is terminated
abnormally, an unknown number of data records may remain in the
Model 4587 tape drive buffer, and not be written to tape. This
is because the Model 4587 tape drive acknowledges receipt of a
record when it has been read into the buffer, even though it
has not yet written to tape. This problem does not occur in
nonbuffered mode, because in nonbuffered mode the tape drive
acknowledges each record only after it is written to tape.

Any of the following conditions can cause a write operation to
terminate abnormally in buffered mode:

[A warm start (bit 6 in statv(2) is set). After a warm
start during buffered mode, you should backspace to the
last file mark, or rewind.

° A tape drive fault (bit 14 in statv(4) is set). After a
tape drive fault, subsequent write commands are not
rejected, but the same fault will be returned unless the
fault condition is corrected.

° An "unrecoverable write error” (bit 16 in statv(4) is set).
After an unrecoverable write error, all subsequent write
commands are rejected. When a write fails on an
unrecoverable error, the error is reported in the status
information for the next operation to be completed after
the failed write operation. The error will be reported
either in a subsequent series of write operations, or in
the first non-write operation after the controller detects
the write failure.

After each write operation in buffer mode, the application
should check bit 16 of statv(4) to see if an unrecoverable
write error occurred. If this bit is not set, there has
been no error on previous write operations; the current
write operation, however, may not yet have been performed.
If bit bit 16 of statv(4) is set, an unrecoverable write
error has occurred during an earlier write operation. In
this case, the tape may be physically damaged, and the user
should restart the application on another tape.

User applications are responsible for ensuring that no
record loss occurs because of mode selection. To avoid
loss of records, do not run any application without knowing
which mode is currently selected. Note that the Model 4587
tape drive defaults to non-buffered mode after system boot.
It is good practice for an application always to select the
mode that it requires before it runs, and to reselect
non-buffered mode when it completes execution. See Using
Your Quad Density Tape Drive for more information about how
to program a Model 4587 tape drive.

First Edition, Update 2 7-42

4 J

J J

N)

)

OTHER PERIPHERAL DEVICES

statv

OUTPUT. 6-halfword status vector. If this is the last argument,
then only the first three halfwords are set. If the code argument
follows, then additional halfwords may be set, depending on the
controller being wused. Each of the statv halfwords are described
below:

statv(l) Status flag:

Value Meaning
1 Operation in progress
0 Operation finished
statv(2) Hardware status word from controller. Possible values
are:
Bits Meaning When Set
01 Vertical parity (read) error
02 Runaway tape error.
03 CRC error (Always 0 for Version 6 or Model 4587)
04 LRC error (Always 0 for Version 6 or Model 4587)
05 False gap or More Record Data than was requested during

a read operation

06 Uncorrectable error. For Model 4587, may indicate that
selected drive is not connected. May also indicate
condition signalled by bits 1, 2, 7, 14, or 15 in
statv(2), or by bits 5, 12, 13, 14, or 16 in statv(4).

07 Read-after-write error detected during 7 retries (for
Version 6: Read-after-write error).

08 File mark detected.
09 Transport is ready.
10 Transport is online.
11 End of tape was detected.
12 Selected transport is re-winding.
13 Selected transport is at load point (beginning of
tape) .
7-43 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

14 Transport is write-protected (file-protected): write
commands are rejected.

15 DMX overrun or no formatter. For Model 4587, may
indicate a FIFO parity error.

16 Indicates that rewind is complete. For Versions 2 and
6 controllers, this bit has no meaning and is always 0.
For Model 4587, set while drive is erasing to EOT.

statv(3) Number of halfwords transferred (read and write
operations only).

statv(4) Hardware status for version 1, 2, and 3 controllers.
Bits 0 and 1 specify density of tape:

00 800 bpi
10 1600 bpi
11 6250 bpi

Other bits in statv(4) used by all controllers:

Bits Meaning When Set

05 Illegal operation to tape drive attempted (write to a
file protected drive).

13 Illegal PIO command issued (OTA not defined as meant
for tape controller.)

statv(4) For Version 6 controllers only:

Bits Meaning When Set
01 (Always set) to indicate GCR density.
02 Always zero.
03 Not used. Always zero.
04 Not used. Always zero.
05 Illegal operation to tape drive attempted (write to a

file protected drive).
06 No cartridge present.

07 This is set when the controller has performed an error
correction operation on a read or write operation.

08 Read error, bad block transfer.

First Edition, Update 2 7-44

J J

J J

D

TSMT

09
10
11
12

13

14

15

16

statv (4)

Bits

13

14

15

OTHER PERIPHERAL DEVICES

Read error, filler block transfer.
Read or write aborted due to unrecoverable error.
Always zero.

Always zero.

Illegal PIO command issued (OTA not defined as meant

for tape controller.)
Device fault or device reset.

Verify failure upon master clear or power up
controller.

of

Record not completely written or incomplete record

read. Always zero. (EOT).

For Model 4587 only:

Meaning When Set

Indicate density setting.

100 : PE

101 : GCR
110 : NRZI
111 : DPE

011 : Default to drive panel control.
100 IPS selected. (When not set, 50 IPS selected.)
Tape operation not legal for Model 4587.
Currently in buffered mode.

Error Correction/Retries necessary on last Read or
Write.

Unused (always 0).

Fatal memory error, or SCSI hung. OCP ’1l7 needed to
clear error.

OTA not defined for Model 4587 was received and
rejected.

Tape drive fault or tape drive reset.

DRAM degraded mode.

7-45 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

16 Write operation aborted by uncorrectable write error.
No write commands accepted until command requiring a
reverse tape movement is received and executed.

statv(5-6) Reserved.

code

OUTPUT. Specifies that the appropriate error code 1is to be

returned to the <calling program. code requires statv to be a
six-halfword array.

The possible error codes returned are:

ESNASS Device specified in physical-unit, not assigned.

ESIVCM Invalid command (e.g. attempt to set density on
version 0 controller).

ESDNCT Device specified in physical-unit not connected, or
no controller.

ES$BNWD Invalid number of halfwords (nhw <=0 or >6144).

Discussion

Magnetic tape I/O is not buffered under PRIMOS. A call to T$MT returns
immediately before the operation is complete. When the magnetic tape
operation is completed, the status flag in the user space is set to 0.
Therefore, a user program may do another computation while waiting. If
a user initiates another call to T$MT before the first call has
completed its magnetic tape operation, the second call does not return
to the user until the first magnetic tape operation has been completed.

Density Selection

It is assumed that tapes are written with one density. For versions 0
through 2 controllers and drives, the user should first set this
density with the drive control panel switches. Version 3-4 controllers
automatically adjust to the correct tape density. Version 5
controllers have a set density. If density is not set automatically,
the user must manually set the drive to the right density before the
first record is read. The rest of the tape will be read (or written)
using that density. The Model 4587 returns an error if the drive is
not at Load Point (BOT) when the user attempts to change the density.

First Edition, Update 2 7-46

3
~

J J

Yy)

3

TSMT OTHER PERIPHERAL DEVICES

For example, if the user set the density to 6250 bpi with the ASSIGN
command and read the first record of a 1600 bpi tape, then the rest of
the tape would be read using 1600 bpi. If after reading that record, a
record was written onto the tape (without rewinding to the load point),
then that record would also be written at 1600 bpi. If the tape was
rewound and then a record was written, the density would be switched to
6250 bpi. Although the density setting of 6250 bpi is remembered, it
will not go into effect until a record is written at the load point.

If the user assigns a tape without specifying a density, the unit will

be left at the density from the previous use. The default density (at
system initialization time) is 1600 bpi.

Read Record Backwards

This request causes the tape to read a record while moving the tape
backwards. It is sometimes possible to read a record backwards when a
bad tape prevents reading the record in the forward direction. After
the record 1is read, it will be necessary to reorganize the data. The
halfwords of the record will be in reverse order. Each halfword will
have the bytes reversed. The bits within each byte will be in correct
order.

Instruction to Get Controller Id

The controller id may be used by software that intends to support all
tape drives, but takes advantage of special features that are available
only with a particular controller. For example, the ERASE command is
only available with version 2 and 3 controllers.

7-47 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

Figure 7-1 shows how buf(l) must be set up for this instruction
("140000)

Not Used Controller ID*

*ID from Table 7-4

BUFF (2) When instr is 140000
Figure 7-1

Use of the TSMT Wait Semaphore

While waiting for an operation to complete (that is, for status-word 1
to go to 0), a process can do one of several things. It can loop while
checking the status-done word, do another operation (such as get
status), or use a wait semaphore.

Looping on a wait for statv(l) to go from 1 to 0 uses up CPU time while
the process waits for the tape operation to complete. This is not a
good practice for two reasons. First, it ties up the CPU needlessly
and slows down system performance in general. Second, it causes the
process to waste some of its time slice without doing useful work.
This will result in the process being scheduled extra time and the real
time of program execution will be longer than necessary.

This problem can be solved by using a semaphore. If the process waits
on a semaphore, the wait time is not counted against its time slice.
Therefore, as soon as the tape operation completes, the process will be
scheduled to run again to finish up its time slice.

The program TSMT contains a wait semaphore that can be used for this
purpose. This semaphore is used to queue tape requests. If the
process makes a tape request when the controller is busy with another
operation, the process is put on the wait semaphore.

When the program wants to wait for a tape operation to complete, it can
call TSMT with a request for status. Since the tape controller is
already busy with the previous operation, the process will be put on
the T$MT wait semaphore.

First Edition, Update 2 7-48

J

J J

M)

)

T$MT

OTHER PERIPHERAL DEVICES

Since the status request is fast and doesn’t affect the tape, it 1is a

convenient tape
scratch status vector should be

operation to

use to
used so

original call is not destroyed.

Loading and Linking Information

FTNLIB
NPFTNLB
PFTNLB
SVCLIB

Example:

100

120

- R-mode
- V-mode
- V-mode
- R—-mode

(unshared)

(maintained for PRIMOS-II)

provide the semaphore wait. A
that the

status from the

A FORTRAN Example of wait code is given here, preceded by the
proper data definitions for variables:

INTEGER CODE,
INTEGER STATV(6) /*

CODE2 /*

RETURN CODES
STATUS VECTOR SET BY TS$MT

INTEGER UNIT /* MAG TAPE DRIVE NUMBER (0-7)

INTEGER BUF (1024)
INTEGER XSTATV (6) /*

SCRATCH

/* OUTPUT BUFFER

VECTOR FOR WAIT

CALL T$MT (UNIT, LOC(BUF), ,:042620,STATV, CODE)
/*WRITE 1024

/* OVERLAP

NOW WAIT FOR TAPE WRITE TO COMPLETE:

EXECUTION WITH IO

IF (STATV(1l) .EQ.0) GOTO 120 /* SEE IF IO IS ALREADY DONE

CALL TS$MT (UNIT,LOC(0),0,:100000,XSTATV,

GOTO 100

CODE2) /* WAIT

First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

Error Recovery on Writing

The two error recovery schemes described here are based on different
record formats. The first algorithm can be used when records contain
only data. The other scheme requires that the records contain extra
information for error recovery.

Notes

A user cannot generate an error recovery procedure for the
QIC-02 tape drive while that drive is in use. Either the drive
itself performs such or an uncorrectable error has occurred.

The Model 4587 drive performs its own error recovery on both
reads and writes.

The following schemes are provided as alternatives to wusing the IOCS
routines that FORTRAN uses. The error recovery provided in the IOCS
routines correspond to that described for Simple Write Error Recovery.

Simple Write Error Recovery: The aim of the simple error recovery
program is to get by a possible bad spot on the tape by erasing part of
the tape where the error occurred and rewriting the record after that
gap.

The program. does not try to rewrite the record on the same spot on the
tape even though repeated tries on the same spot may improve the tape
enough to permit the write to succeed. The tape is considered marginal
at that spot and may not be readable at a later date.

Only two controllers will erase an entire tape. The version 3
controller (MPC-3), which supports the 6250 bpi tape drives, has an
ERASE command. The QIC-02 cartridge tape drive also accepts an "Erase

entire tape" instruction (/100240 or (HEX)80AO0).

The version 2, 3, and 4 controllers have an "Erase 3.5 inch gap"

(100020 or (HEX)8010) to erase over a badspot on a tape, using the

following technique.

Program steps for write error recovery:

1. Check if error recovery 1s possible. Don’t attempt error

recovery if the tape drive is offline or not ready, or the tape
is file-protected.

2. Erase a 3.5 inch gap on the tape:

e If a version 2, 3, or 4 controller, perform "erase 3.5
inch gap" operation

First Edition, Update 2 7-50

J

J J

)

TSMT OTHER PERIPHERAL DEVICES

e Otherwise perform a "write file mark™ operation,
followed by perform a "backspace record" operation,
followed by a check that the filemark detect bit is set
in the status word.

3. Attempt to rewrite the record.

4. If the record was not written successfully, repeat steps 2 and
3 up to twenty times. Note that step 2 is done once on the
first repetition, twice on the second repetition, thrice on the
third, and so on, up to twenty retrys (a maximum of five feet
of erased tape).

Write Error Recovery with Sequence Numbers: There is a drawback to the

first scheme. Since the tape is bad at the spot where the error
recovery is being done, it is possible for errors to occur while
backspacing. For example, if the bad record has a gap in the middle of
it, the program might detect two short records when backspacing. If
the program has some way of identifying records, the program can be
sure that it has not lost position during error recovery.

One way to do this is to include a sequence number with every record.
Then when error recovery is attempted, the program backspaces two
records and then reads a record. This record should contain the
sequence number of the last good record before the error record.

Program steps for error recovery:
1. Check if error recovery 1is possible. Don’t attempt error
recovery if the tape drive is offline or not ready, or the tape
is file-protected.

2. Position the tape after the last good record.

e Backspace two records. This will place the tape before
the last good record.

e¢ Read a record and verify that its sequence number
matches the one expected for the last good record.

e If the "good’ record can’t be read, then it is possible
that the tape 1is not positioned correctly. Backspace
several records and read those records to find the
sequence number of the last good record written.

3. Erase a 3.5 inch gap on the tape.

e If a version 2, 3, or 4 controller, perform "erase 3.5
inch gap" operation

7-51 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

e Otherwise perform a "write file mark” operation,
followed by perform a "backspace record" operation,

followed by a check that the filemark detect bit is set’

in the status word.
4. Attempt to write the record again.

5. If the record was not written successfully, repeat steps 1-4 up
to twenty times, lengthening the gap each time.

Error Recovery on Reading

Error recovery when reading a tape involves repeatedly rereading the
record. The problem of losing position can occur when doing error
recovery. Therefore, the procedure can be improved by verifying the
sequence number each time a record is read. Note that the Model 4587
drive performs its own error recovery on both reads and writes.

Program steps for read error recovery:

1. Check that error recovery is possible. Don’t attempt error
recovery if the tape drive is offline or not ready.

2. Backspace and reread the record eight times.

3. If unsuccessful, backspace eight records (or to the load point
if less than eight records away), space forward seven records
and then read the problem record. This sequence draws the tape
over the tape cleaner and could dislodge a possible dirt
particle.

4. Repeat steps 1-3 eight times.

First Edition, Update 2 7-52

) I

J J

)

y

PART III

SMLC/AMLC SUBROUTINES

DI

M)

8
Synchronous and
Asynchronous Controllers

Part III of this Volume describes the subroutines and the control block
configurations used with Synchronous and Asynchronous Controllers.

Chapter 8, containing all this information, first describes T$SLCO, the
R-mode subroutine used for Synchronous Multi-Line Controllers.
Thirteen Tables follow the description of T$SLCO, each giving control
block bit configurations dependent on the key option used within
T$SLCO. The last two subroutines described in this chapter, ASNLN$ and
T$SAMLC, are used for Asynchronous Multi-Line Controllers.

Routine Function

T$SLCO Communicate with SMLC driver.

ASNLNS Assign AMLC line.

T$SAMLC Communicate with AMLC driver.

ASSLST List specified asynchronous line
characteristics.

ASSLIN Return asynchronous line number.

ASSSET Set asynchronous line characteristics.

NTS$LTS Returns information about a PRIMOS line

used for LAN terminal service.

8-1 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/0

SYNCHRONOQUS CONTROLLERS

This section defines the raw data mover for the assigned SMLC line.
See the System Administrator’s Guide for a discussion of SMLC lines.

There can be a maximum of two synchronous controllers configured: two
MDLCs, two 1ICSls, or one of each. An MDLC supports up to four
synchronous lines; an ICSl supports one synchronous line. The ICS1

also provides asynchronous support on the same board. The number of
synchronous lines available depends on the controller configuration in
use. Present possible configurations are given below.

Controller 1 Controller 2 Max Synchronous Lines
MDLC (4) MDLC (4) 8
MDLC (4) MDLC (2) 6
MDLC (4) ICSs1 5
MDLC (4) - 4
MDLC (2) ICS1 3
MDLC (2) - 2
ICSsl ICSsl 2
ICsl1 - 1

Note: MDLC(4) is a four-line MDLC; MDLC(2) is a two-line MDLC.

Caution

R-mode subroutines can be called from FTN and PMA in R-mode
only. If you call an R-mode routine from a program in a
different mode, the results are unpredictable. Refer to the
FORTRAN and PMA chapters in Volume I for information on
declaring parameters in FTN and PMA, respectively.

First Edition, Update 2 8-2

y

J J

)

SYNC/ASYNC CONTROLLERS

T$SLCO

Purpose

The SMLC driver is loaded in PRIMOS. A user program communicates with
the driver via FORTRAN-format calls to TS$SLCO. The driver communicates
with the wuser address space via buffers in the user address space
specified by the user program. The data structure used by the driver
is a control block created by the user in the user address space. It
contains pointers to the user status buffer and to buffers containing a
message to be transmitted or set to receive a message. A separate
control block is required for each line.

Usage

INTEGER*2 key, line, block(1l), nhwds

CALL TSSLCO (key, line, LOC(block), nhwds)
Parameters
key

INPUT. Indicates the desired operation and may hold the following
values:

1 Stop line. Only key + line required for the subroutine to
execute on this key.

2 Define control block. The block is structured as in Table
8-1. It defines an area to store status information and,
optionally, a message chain for reception or transmission.

3 Array block contains five halfwords which are to be output to
the controller. See Tables 8-2 through 8-11 for details.

4 Array block contains a halfword which is to be used as the
next data set control word. See Table 8-12 for details.

5 Array block contains two halfwords which are to be used as the

next receive/transmit enable words. See Table 8-13 for
details.

8-3 First Edition

SUBROUTINES, VOLUME IV T$SLCO

line

The calling user process will go to sleep. It will waken at
the next SMLC interrupt or after approximately one second. It
will run with a full time slice interval. The value line is
ignored, as are addr(block) and nhwds. If, however, the user
process does not own any SMLC lines, the call will return
immediately.

Return model number. When using this key, nhwds must equal 1.
Model number will be returned in block.

For MDLC model numbers, the value will be given in octal. The

possible model numbers and their associated protocols are the
following.

Model Number

(Octal) Protocols

0 HSSMLC
5646 BISYNC and HDLC
5647 BISYNC and PACKET
5650 BISYNC and 1004/UT200/7020
5651 HDLC and 1004/UT200/7020
5652 PACKET and 1004/UT200/7020
5653 HDLC and PACKET
5654 BISYNC and GRTS

ICS1 model numbers are specified in decimal. Listed below are
their model numbers, the number of synchronous or asynchronous
lines they support, and the Protocols they use.

Model Number Lines Supported Protocols
sync async
5181 1 8 BISYNC
5141 1 4 BISYNC

INPUT. Octal line number 0-7.

First Edition 8-4

))

)

b

T$SLCO SYNC/ASYNC CONTROLLERS

LOC (block)

INPUT. Pointer to address of user’s block. User’s block must
reside entirely within one page.

nhwds

INPUT. Number of halfwords in block.

Loading and Linking Information

FTNLIB - R-mode
SVCLIB -— R-mode (maintained for PRIMOS-II)
Discussion

Before calling T$SLCO to configure a line (key = 3), a call with a key
of 7 should be made to see if the controller contains the proper
protocol and to determine what the line configuration should be. 1If an
error occurs during initialization, the following error messages are
printed:

No SMLCxx -(controller address)
No CONTROLLER CONFIGURED for SMLCyy (logical number)
UNDEFINED CONTROLLER ID for SMLCxx (controller address)

It is the responsibility of the caller to see that the 1line
configuration is correct for the model of MDLC being used.

Timing: The user space program runs asynchronously with message
transfers. A call to TS$SLCO returns immediately after executing
whatever control function was required. The progress of the
communication must be monitored by the user program by examination of
the user space status buffer contents.

8-5 First Edition

SUBROUTINES, VOLUME IV T$SLCO

Assigning Communication Lines: The communications 1lines must be

assigned to a user space before they can be used. The proper command
is:

(SMLCOO
SMLCO1
SMLCO02
SMLCO03
SMLCO04
SMLCO05
SMLCO06

\ SMLCO07

ASSIGN J

given at the user terminal. One or more lines may be assigned to a
given user.

First Edition 8-6

J J

)

)

T$SLCO SYNC/ASYNC CONTROLLERS
Table 8-1
Key = 2 SMLC Control Block
Halfword 0 Last receiver/transmitter enable word sent to the
HSSMLC by the driver. (This halfword is written
into but not read by the driver.)
Bit 15 =1 Transmitter on
Bit 16 = 1 Receiver on
Halfword 1 Bit 1 Valid line enable order in bits 2-16
Bits 2-16 Line enable order. See Table 8-4,
Halfword 0.
Halfword 2 Bits 1-4 Data set status mask (DSSM)
Bits 5-8 Required data set status (RDSS)
Bit 9 Set: No data set order - ignore Word 2
Bits 13-16 Data set control order (DSCO)
Note
Issue DSCO, wait for
(DS status .AND. DSSM) = RDSS,
then issue line enable order.
Halfword 3 Spare
Halfword 4 Pointer to top of status buffer
Halfword 5 Pointer to bottom + 1 of status buffer
Halfword 6 Pointer to next halfword in status buffer to
receive the status information. (This halfword is
written into but not read by the driver.)
Note
The status buffer must be completely contained in the
same page as the control block.

8-7 First Edition

SUBROUTINES, VOLUME IV

Table 8-1 (continued)
Key = 2 SMLC Control Block

T$SLCO

Halfword 7 Bits 1-2 01’ there exists a continuation
control block
Bits 3-6 Halfword count of next block - 8
Bit 7 0

Bits 8-16 Offset in current 512 halfword page
of next block

Note

The continuation block must reside in the same page as
the control block from which it was continued.

Halfword 8 Bit 16:
1 Transmit
0 Receive

Note

If Halfword 8 is given (nhwds > 8) then at least one
DMC address pair must be given.

Halfwords 9-10 DMC start and end address pointers.
11-12 Up to four pairs may be specified to
13-14 allow for channel chaining.
15-16
Note

Transmit/receive buffers may reside in any page, but
their starting and ending address pointers must reside
in the same page.

First Edition 8-8

J

9y

N

A

TS$SSLCO SYNC/ASYNC CONTROLLERS
Table 8-2
Key = 3 Line Configuration Control Block (Bits 10-16)
Halfword 0 Bits 10 through 16 are constant for all
controllers and protocols. Descriptions for
Bits through 9 follow descriptions of these
constants.
Bit 10 Enable formatter option (BISYNC, UT200,
ICL 7020, 1004, PACKET SWITCH depending
on HSSMLC options)
Bit 11 Enable reporting of data set changes by

interrupt and status halfword.

Bits 12-14 12 13 14

L--Automatic Parity Enable
D Parity Select 0 = odd,*
e Parity Enable

Bits 15-16 15 16

———e- Number of bits per character

*If automatic parity is enabled with 8-bit data enabled, no parity will
be generated or checked (that is, no 9-bit data formats).

Automatic parity-enable

appends a parity bit to the data while

parity-enable steals the most significant bit of each data byte.

8-9 First Edition

SUBROUTINES, VOLUME IV

Table 8-3

Key = 3 Line Configuration Control Block (HSSMLC, bits 1-9).

TS$SLCO

HSSMLC
Halfword 0 1 2 3 4 5 6 7 8 9
— | |
| t-Select formatter mode:
| 0 EBCDIC
! 1 AsCII
]
1
Select BCC:
1 LRC
(use with ASCII mode only)
0 CRC-16

Unused control bits

First Edition 8-10

J

)

Y

T$SLCO SYNC/ASYNC CONTROLLERS

Table 8-4
Key = 3 Line Configuration Control Block (5646, Bits 1-9)

5646

BISYNC

Halfword 0 1 2 3 4 5 6 7
0 0 0 0 0 0

————- O

L——- 0 EBCDIC
1 ASCII

jm—m————————

--1 Enable LRC
0 CRC16

L———— Enable "X.25" Operation

HDLC
Halfword 0 1 2 3 4 5 6 7 8 9
1 0 P

] |
: [}
! Tx: End message on
E left byte
!
Tx: 0 = FLAG line during

idle periods.
-1 = MARK line during
idle periods.

Enable GO-AHEADs
(loop mode)

Tx: Start on right byte

Rx: Start on right byte and
generate encoded status if
message ends with the left
byte.

HDLC enable

Enable all-parties address mode.

Enable secondary station mode.

Secondary station mode, HDLC mode, Loop mode, and all-parties address
mode are enabled on a line-pair basis only.

8-11 First Edition

SUBROUTINES, VOLUME IV

Table

8-5

Key = 3 Line Configuration Control Block (5647, Bits 1-9)

TSSLCO

5647
BISYNC

Halfword 0

PACKET

Halfword O

1 2 3 4 5 6 7 8 9
6c o 0 0 0 0 O i '
]
] [}
i L---0 EBCDIC
i 1 ASCII
1
Ii---l Enable LRC
0 CRC16
--- Enable "X.25" operation
1 2 3 45 6 7 8 9
o ¢ y 0 0 0 0 0 O
i [}
1]
i Enable CRC24
]
]

L--Enable upper bank

First Edition

)

)

T$SLCO SYNC/ASYNC CONTROLLERS

Table 8-6
Key = 3 Line Configuration Control Block (5650, Bits 1-9)

5650
BISYNC
Halfword 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 o ! 1
]]
1 1
i L--- 0 EBCDIC
' 1 ASCII
1
]
t--1 Enable LRC
0 CRC16
D Enable "X.25" Operation
ICL7020/UT200/1004
Halfword O 7 8 9
1 0 0 1 1

N
o w

o

o wm
—————\

L---Enable ICL7020%*

—————————

Enable 1004%*

Recommended Configurations

1004 140722
UT200 40723 (Add '40 to enable DSS
ICL7020 42723 interrupts)

* Default protocol is UT200

8-13 First Edition

SUBROUTINES, VOLUME IV T3$SLCO

Table 8-7
Key = 3 Line Configuration Control Block (5651, Bits 1-9)

5651
ICL7020/UT200/1004
Halfword 0 1 2 3 4 5 6 7 8 9
! 0 0 0 0)} 0 1 1
]]
] !
E Enable ICL7020%
]
]
Enable 1004*
Recommended Configurations
UNIVAC 100722
UT200 1723 (Add '40 to enable DSS interrupts)
ICL7020 r2723
HDLC

Halfword 0 1 2 3 4 5 6 7

H ———— ©

x: End message on
left byte

1 m—meme———— ®

x: 0 = FLAG line during
idle periods.

-1 = MARK line during
idle periods.

---Enable GO-AHEADs
(loop mode)

“--- Tx: Start on right byte

Rx: Start on right byte and
generate encoded status
if message ends with the
left byte.

.--- HDLC enable

k=---- Enable all-parties address mode

Enable secondary station mode

Secondary Station Mode, HDLC mode, Loop mode, and all-parties address
mode are enabled on a line-pair basis only.

*Default protocol is UT200

First Edition 8-14

)

)

T$SLCO

Table 8-8

SYNC/ASYNC CONTROLLERS

Key = 3 Line Configuration Control Block (5652, Bits 1-9)

5652
ICL7020/UT200/1004
Halfword 0 1 2 3 4 5 6 7 8
' 0 0 0 o0 !} 0 1
] 1
]]
| Enable ICL7020
]
]
i-—- Enable 1004 (UT200=Default)
Recommended Configurations
1004 100722
UuT200 723 (Add "40 to enable
ICL7020 12723 DSS interrupts)
PACKET
Halfword 0 1 2 3 4 5 6 7 8
0 ! ! 0 0 0 0 0
] [l
i i
| i-Enable CRC24
]
[]
S Enable upper bank

First Edition

SUBROUTINES, VOLUME IV

TS$SLCO

Table 8-9
Key = 3 Line Configuration Control Block (5653, Bits 1-9)

565
HDLC

w

Halfword 0 1 2 3 4 5 6
0

PACKET

Halfword 0 1 2

o

=
re————Ww

=

o

o

Tx:
Rx:

- HDLC enable.
«--- Enable all-parties address mode.
Enable secondary station mode.

Secondary station mode, HDLC mode, loop mode, and all-parties
address mode are enabled on a line-pair basis only.

H === ©

x: End message on
left byte.

M mmmmm—————

x: 0 = FLAG line during
idle periods.

-1 = MARK line during
idle periods.

Enable GO-AHEADs
(loop mode) .

Start on right byte

Start on right byte

and generate encoded status
if message ends with the
left byte.

First Edition 8-16

J

J

)

T$SLCO SYNC/ASYNC CONTROLLERS

Table 8-10
Key = 3 Line Configuration Control Block (5654, Bits 1-9)

5654

BISYNC

Halfword 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 ! !

1 1
1 1
{ 0 EBCDIC.
! 1 ASCII.
[}
1
1 Enable LRC.
0 Enable CRC16.

“- Enable "X.25" Operation.

GRTS

Halfword 0 1 2 3 4

w
_——-
~

9

]

1

]

0 EBCDIC.
1 ASCII.

GRTS uses ASCII.

——m— e ————— O

-1 Enable LRC
0 Enable CRC1l6.
GRTS uses LRC.

L--Enable "X.25" Operation
Not used in GRTS

8-17 First Edition

SUBROUTINES, VOLUME IV

Table 8-11

Key = 3 Line Configuration Control Block (Halfwords 1-4)

TSSLCO

Halfword 1

Halfword 2

Halfword 3

Halfword 4

Word configuration - Transmitter bit settings
as for Halfword 0.

Special character (OTA ‘00 : Function ’‘10)

Bits 7-8 00 Character 1
01 Character 2
10 Character 3
11 Character 4

Bits 9-16 Character
Special character bit settings as for Halfword 2
Clock selection:

0 Reset internal clock to default 9.6 Kbps.
1 Switch internal clock to 62.5 Kbps.

First Edition

8-18

))

J

)

TS$SLCO SYNC/ASYNC CONTROLLERS

Table 8-12
Key = 4 Data Set Control Bits (OTA ‘00:Function ’00)
Bit 13 Not used
Bit 14 Speed Select
Bit 15 Request to send (RTS)
Bit 16 Data Terminal Ready (DTR)
Table 8-13

Key=5 Receive/Transmit Enable (OTA ‘00:Function ’15)

Halfword O Bit 11 Select internal as receive clock
Bit 12 Select internal as transmit clock
Bit 13-14:

00 Normal (transmit out, receive in)
01 Loop full duplex (transmit out,
receive in)
10 Echo full duplex (receive in,
transmit out)
11 Loop half duplex (pair combinations
must be: 1-2, 2-1, 3-4, 4-3)
Bit 15:
1 Enable transmitter
0 Disable transmitter
Bit 16:
1 Enable receiver
0 Disable receiver

Halfword 1 Bit 16:
1 Enable transmitter
0 Enable receiver

Note

Transmitter and receiver must be enabled/disabled separately.

8-19 First Edition

SUBROUTINES, VOLUME IV

J

ASYNCHRONQUS CONTROLLERS

J

Applications that require the use of asynchronous controllers are
serviced by two subroutines: ASNLNS$ for line assignment requests and
TSAMLC for raw data movement. The description of these subroutines
follow.

J

First Edition 8-20 ﬂ

M)

A

SYNC/ASYNC CONTROLLERS

ASNLN$

Purgose

ASNLNS (Assign AMLC line) allows user programs to request the
assignment of a line directly.

Usage:

DCL

ASNLNS ENTRY(FIXED BIN(15), FIXED BIN(15), CHAR(6),
FIXED BIN(15), FIXED BIN(15), FIXED BIN(15)):

CALL ASNLN$ (key, line, protocol, config, lword, code);

Parameters

key

line

INPUT. Indicates the desired assignment option and may be one of
the following:

0 Unassign AMLC line.
1 Assign AMLC line.
2 Unassign all AMLC lines owned by caller.

INPUT. Indicates the desired line number to be addressed for the
keyed operation.

protocol

INPUT/OQUTPUT. 1Indicates the desired protocol (input or output).
Blanks cause a default to TRAN (transparent), signifying both input
and output. Refer to the System Administrator’s Guide for a
complete discussion of AMLC protocols.

config

INPUT. 1Indicates the desired config setting. 0 indicates no
change desired.

8-21 First Edition

SUBROUTINES, VOLUME IV ASNLNS

lword

INPUT. Indicates the desired 1line characteristics. The buffer
number used for the line cannot be changed by a user program using
this interface.

code

OUTPUT. Status returned to caller, either a 0 for success or one
of the error codes, as listed in Appendix A.

Description

This routine, a direct entrance call, performs the assignment and
unassignment of AMLC lines for a caller. A user may own more than one
assigned line. The caller may also set line characteristics, protocol,
etc. This routine will only allow a caller to assign a line that has a
corresponding LBT entry of 0, which means that the line is assignable.
The buffer used for the assigned 1line is dynamically chosen within
ASNLNS.

Refer to the System Administrator’s Guide for protocol, config, and
lword values.

Loading and Linking Information

NPFTNLB -—- V-mode (unshared)
PFTNLB - V-mode
First Edition 8-22

)

)

J

M)

SYNC/ASYNC CONTROLLERS

T$AMLC

PUIEOSG

TSAMLC is a direct entrance call. It performs raw data movement,
provides status information about assigned AMLC lines, and transfers
characters between the caller’s buffer and a desired assigned line’s
buffer. The caller must own the desired line, that is, the line has
been assigned with the ASNLN$ routine or a Primos command.

Usage

DCL T$AMLC ENTRY (FIXED BIN(15), PTR OPTIONS (SHORT), FIXED BIN(15),
FIXED BIN(15), 2 FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15)):

CALL TSAMLC (line, ADDR(buffer), ch_cnt,
key, statv, ch_pos,
errcode) ;

Parameters

line

INPUT. Indicates the AMLC 1line number desired for the data
movement operation.

ADDR (buffer)
INPUT. Pointer to the address of the caller’s buffer.
ch_cnt
INPUT. Indicates the desired number of characters to move. No

maximum limit is enforced, other than the limits of the fixed
bin(15) parameter: 32,767 characters.

8-23 First Edition

SUBROUTINES, VOLUME IV TS$AMLC

key

INPUT. Indicates the desired operation. Valid keys are:

1

2

10

11

First Edition

Input ch_cnt characters.

Input ch_cnt characters or until .NL. is encountered.

statv(l) will hold the actual number of characters read.

Output ch_cnt characters. Maximum is ch_ent. This key
assures the caller that ch_cnt characters will be
output. For example, an error is not returned if the
line’s input or output buffer is smaller than ch_cnt.
T$SAMLC will output blocks of data from the caller’s
buffer into the available space in the line’s output
buffer until ch_cnt is exhausted. A one-second wait is
issued between output chunks to allow time for the
line’s output buffer to clear. In most <cases, the
entire ch_cnt should be output at once.

Load statv such that statv(l) = number of characters in
input buffer. statv(2) = state of carrier. 0 =
carrier, not 0 = no carrier.

Return status of output buffer such that statv(l) = 1 if

room for ch_cnt in output buffer. statv(l) = 0 if not
enough room for ch_cnt. statv(2) = state of carrier.

Input all available characters in the input buffer.
Maximum = ch _cnt. This key will place all the available
characters from the 1line’s input vbuffer into the
caller’s buffer. statv(l) = number of characters
actually input.

Return additional output buffer status. (Refer to key
5.) statv(l) = amount of character space remaining in
the output buffer.

Flush input buffer.
Flush output buffer.
Flush both output and input buffers.

Output characters to available space in output buffer.
This key will output as many characters as possible into
the line’s output buffer. A wait will not be done to
exhaust ch_cnt.

After execution on this key, statv(l) = ch_cnt minus the
number of characters actually output, i.e. statv(l) =
number of chars that were not successfully output. If
statv(l) = 0, then all characters were output.

))

))

M)

h N

TSAMLC SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

statv

OUTPUT. Indicates the two-halfword status vector, subdivided into
statv(l) and statv(2); these will output values dependent on the
key that is input.

ch_pos

INPUT. The caller may wish to indicate a starting position within
the buffer addressed by loc(buf_ad). ch_pos applies for both input
and output keys. This is an optional argument. If omitted, the
default is to start with the first character.

Note

If ch _pos is used, the first character position should be
indicated by 1. (There is no character at position 0.)
Also, ch_pos is not updated within T$AMLC.

code
OUTPUT. Optional argument to return error status. If code 1is
present, error messages will not be printed at the caller’'s
terminal.

Loading and Linking Information

FTNLIB - R-mode

NPFTNLB -- V-mode (unshared)

PFTNLB - V-mode

SVCLIB - R-mode (maintained for PRIMOS-II)

8-25 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

ASSLST

Purgose

ASSLST retrieves asynchronous line characteristics.

Usa

DCL

e

ASSLST ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
PTR, PTR, FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15)):

CALL ASSLST (line_number, key, version, list_ptr, errlist_ptr,

list_length, errcount, code);

Parameters

line_number

key

INPUT. The asynchronous line about which you wish to retrieve
information. Specify -1 to retrieve the characteristics of your
login line.

INPUT. A key that indicates the source of the information that
ASSLST is to return. The valid keys are:

key action
KS$PLST Return the parameters specified by the parameter

list pointed to by list_ptr. (See below.)

K$GTAL Return all parameters. An asynchronous line has
29 retrievable characteristics. A full list of
characteristics and values is provided below.

version

INPUT. The version number of the ASSLST internal structure. For
PRIMOS Revision 22, set this parameter to 1.

list_ptr

INPUT -> OQUTPUT. A pointer to an array in your program that
consists of pairs of 16 bit halfwords. In the first entry of each
pair, you can specify a line characteristic that you want AS$LST to
return; ASSLST returns the corresponding value of that

First Edition, Update 2 8-26

J

J J

r ASSLST SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

characteristic to the second entry in the pair. If you want ASSLST
to return only the 'characteristics specified in this array, you
must set key to KSPLST. If you want ASSLST to return values for
all 29 asynchronous line characteristics, set key to K$GTAL; in
this case, you need not specify anything in the array.

N

errlist_ptr

INPUT -> OUTPUT. A pointer to an array of 16 bit halfwords in your
program. ASSLST returns error codes for invalid characteristics to
this array if key is set to K$PLST. This array should be the same
size as the array pointed to by list_ptr. Errors are returned as
pairs of numbers, the first number in each pair being an index to
the list you specified in list_ptr, and the second number being the
error code. For example, if you specify two characteristics in the
array pointed to by list ptr and the second characteristic you
specified contains an error, the errlist_ptr array will contain a

r pair consisting of the number 2 followed by an error code. The
error codes returned to this list are as follows:

ESDPAR Duplicate parameter. Returned each time a wvalid
characteristic number is duplicated in the list.

ESPNR Parameter not retrievable. Returned if you specify a
characteristic number that is invalid or a wvalid
characteristic number that may not be retrieved.

’ list_length

INPUT -> OUTPUT. If you set key to K$PLST, you must set
list_length to the number of asynchronous line characteristics
specified in the array pointed to by list_ptr. 1If you set key to
KS$GTAL, you must set list_length to the declared size of the array
of pairs of halfwords; ASSLST will change the list_length value to
the number of pairs that it returns. The arrays pointed to by
list_ptr and errlist_ptr should be the same size.

’ error_count

The number of errors returned to the error 1list pointed to by
errlist_ptr. Errors are returned to this list only if you set key
to KSPLST.

D

8-27 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O ASSLST

code
OUTPUT. Standard error code. The possible codes are:
ESOK The operation completed successfully.

ESBLEN The array was not large enough for the number of
characteristics to be returned.

ESBVER The version number is not correct.

ESBPAR A bad parameter was specified in the list pointed to by
list_ptr. If this error is returned, there are one or
more error codes in the error list pointed to by

errlist_ptr.

Discussion

ASSLST returns the characteristics of the asynchronous 1line that you
specify. You can use ASSLST to retrieve all of the line’s
characteristics or any subset of them. ASSLST can return the
characteristics of 1local asynchronous lines and Network Terminal
Service (NTS) lines. These can be terminal lines or assignable lines.
ASSLST cannot list characteristics of remote users; you must use
DUPLX$ to list characteristics of remote users.

The information returned by AS$LST consists of pairs of numbers: the
first number in each pair is the characteristic, and the second number
is the value of the characteristic. Each pair consists of two 16 bit
halfwords.

To make ASSLST return only certain characteristics, you must set key to
K$PLST; then you must specify the number of each characteristic that
you want to retrieve as the first number in one of the pairs in the

list_ptr array.

ASSLST can return the following asynchronous line characteristics:

2 Echo 0 -- No echo
1 -- Echo
5 Reverse flow control 0 -- No Xon/Xoff

1l —- Xon/Xoff

—-— Other

-- 110 bps
—-- 134.5 bps
300 bps
—-— 1200 bps
-— 600 bps
-- 75 bps

-- 150 bps

11 Line Speed -

AU WN O
|
|

First Edition, Update 2 8-28

J

J

-

)

AR

ASSLST

12

13

21

50

51

52

53

75

76

Flow control

Line feed

Parity check

Char length

Stop bits

Parity type

Line protocol

8 —-
9 -

11 -
12 -
13 -
14 -
15 -
16 -
17 -
18 -
30 -
31 -

fury
1
1

0
1
2
3
4 ——
5
6
7
8
9

Data sense enable

Data set sense

0

SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

1800 bps
200 bps
100 bps
50 bps
75/100 bps
2400 bps
4800 bps
9600 bps
19200 bps
48000 bps
56000 bps
64000 bps
3600 bps
7200 bps

No Xon/Xoff
Xon/Xoff

No line feed

Line feed after carriage return

No parity checking
Parity checking and generation

bits
bits
bits
bits

@ ~Jo U

[y

stop bit
stop bits

[\

Parity odd
Parity even

TTY
TRAN
TT8BIT
TTYUPC
TTY8
TTYNOP
TTYHS
TRANHS
TTY8HS
TTYHUP

0 —— Don’'t use reverse channel protocol
1 -- Use reverse channel protocol

-- If Data set
If Data set
-—- If Data set
If Data set

sense
sense
sense
sense

is
is
is
is

off (1) ; do XON
on(0); do XOFF
off (1) ; do XOFF
on(0); do XON

First Edition,

Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

ASSLST

77 Input error detection 0 —-- Disable error detection
1 -- Enable error detection
78 Data set control 0 -- Off
1 -- On
79 Loop line 0 -- Do not loop
1l -- Loop
80 User number Terminal line: process number associated with line.
Assignable line: Owner process number of line.
81 Auto speed detect 0 -- Do not enable auto speed detect
1 -- Enable auto speed detect
82 Line type 0 -- Terminal line
1 -- Assignable line
83 Logout on disconnect 0 -- Disable logout on disconnect
1 -- Enable logout on disconnect
Note
Do not attempt to set characteristics numbered 84 or greater.
84 Jumper 1 speed Same possible values as characteristic 11.
85 Jumper 2 speed Same possible values as characteristic 11.
86 Jumper 3 speed Same possible values as characteristic 11.
87 Clock speed Same possible values as characteristic 11.
88 Buffer number Terminal line: Buffer number associated
with process.
Assignable line: Buffer number associated
with line.
89 Clock line 0 -- Line is not the clock line
1 —-- Line is the clock line
90 Flow control type 0 -- None
1 -- Input buffer
2 -- On controller board
3 —-- Both input buffer and on controller board
91 Controller type 0 —-- Unknown
1 —- ICs1
2 -- 1Ics2
3 -- ICS3
4 -- AMLC/DMT
5 —-- AMLC/DMQ
First Edition, Update 2 8~-30

J

J J

D)

3)

ASSLST SYNCHRONOUS AND ASYNCHRONQOUS CONTROLLERS

6 —— NTS
92 AMLQ buffer Any legal buffer size.

105 Received XOFF 0 -- Did not receive XOFF
1 -- Received XOFF

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

8-31 First Edition,

Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

ASSLIN

Purpose

ASSLIN returns asynchronous line number.

Usage
DCL ASSLIN ENTRY (FIXED BIN(15), FIXED BIN(15)):

CALL ASSLIN (line_number, code);

Parameters

line_number
OUTPUT. The line number of your asynchronous line.
code
OUTPUT. Error status code. The possible codes are:
ESOK The operation completed successfully.
ES$BLIN Bad line number.
ESLNP Line not present on system.

ESRMLN Illegal operation on remote line.

Discussion

ASSLIN returns the line number of the asynchronous line attached to the
caller’s terminal. This subroutine returns local line numbers; it
does not return remote line numbers. Do not use this subroutine for
remote login terminals that use a modem. This subroutine can be used
for terminals connected to the system by a direct connect modem.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

First Edition, Update 2 8-32

J

) J

Ny)

Y

SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

ASS$SET

Purgose

ASS$SET sets asynchronous line characteristics.

Usage

DCL ASS$SET ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
PTR, PTR, FIXED BIN(15), FIXED BIN(1l5),
FIXED BIN(15));

CALL ASSSET (line_number, key, version, list_ptr, errlist_ptr,
list_length, errcount, code):;

Parameters
line_number

INPUT. The asynchronous line to be set. Specify -1 if you wish to
set your login stream line.

key

INPUT. A key that indicates the source of the information for
setting the line characteristics. The possible options are:

key action
KS$PLST Indicates that the source of the

information is the list pointed to by list_ptr.

KS$SLS Indicates that the source of the information is the
system login settings defined in the System Login
Characteristics Table. This Table is described in
the System Administrator’s Guide, Volume II.

version

INPUT. The version number of the AS$SET internal structure. For
PRIMOS Revision 22, set this parameter to 1.

list_ptr
INPUT. A pointer to an array of 16-bit halfwords in your program.

Use this array to specify the line characteristics and their values
that you wish to set. Specify this information as pairs of

8-33 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O ASS$SET

numbers, the first number in each pair being the characteristic and
the second number being the value. The numbers for characteristics
and their values are listed in the description of ASSLST. Each
pair of numbers requires two 16-bit halfwords.

errlist_ptr

INPUT -> OUTPUT. A pointer to an array of 16 bit halfwords in your
program. ASSSET returns error codes for invalid characteristics to
this array. This array should be the same size as the array
pointed to by list_ptr. Errors are returned as pairs of numbers,
the first number in each pair being the index to the 1list you
specified in 1list_ptr and the second number being the error code.
For example, if you specify two characteristics in the array
pointed to by list_ptr and the second characteristic you specified
contained an error, the errlist_ptr array will contain a pair
consisting of the number 2 followed by an error code. The error
codes returned in this list are as follows:

ESDPAR Duplicate parameter. Returned each time a valid
characteristic number is duplicated in the 1list.

ESIPS Invalid parameter setting. Returned for a valid
characteristic number with an invalid value.

ESITLB Invalid terminal line buffer. Returned if you try to set
the User Number characteristic for an assignable line.

ESPNS Parameter not settable. Returned if you specify a
characteristic number that is invalid or a valid
characteristic number that may not be set.

list_length

INPUT. The number of characteristics specified 1in the array

pointed to by list_ptr. The arrays pointed to by list_ptr and

errlist_ptr should be the same size. If you specify K$SLS for the
key parameter, you must set the list length to zero.

errcount

OUTPUT. The number of errors returned to the array pointed to by
errlist_ptr.

code
OUTPUT. Standard error code. The possible codes are:
ESOK The operation completed successfully.

ESBLEN The error list is not large enough for the number of
errors to be returned. No characteristics have been set.

First Edition, Update 2 8-34

) I

J)

M)

M)

ASSSET SYNCHRONQUS AND ASYNCHRONQUS CONTROLLERS

ES$BPAR One or more errors were returned to the array pointed to
by errlist_ptr. No characteristics have been set.

E$BVER Incorrect version number. No characteristics have been
set.

Discussion

ASSSET sets characteristics of asynchronous lines. It can set the
characteristics of local asynchronous lines and Network Terminal
Service (NTS) 1lines. These can be terminal lines or assignable lines.
Characteristics set using ASS$SET remain set for the duration of the
current session. AS$SET cannot set characteristics of remote users:;
you must use DUPLXS$ to set characteristics of remote users.

ASS$SET sets characteristics based on the key parameter. If key is
KSPLST, ASSSET uses the information you supply in the area pointed to
by list_ptr to set characteristics. If key is K$SLS, ASSSET resets all
characteristics to system defaults.

You wuse ASSSET to change the values of characteristics;
characteristics not specified in ASS$SET remain set to their existing
values. You specify values for characteristics as pairs of code
numbers, the first number in each pair specifying the characteristic,
and the second number specifying the value for that characteristic.
You can specify these pairs in any sequence.

The names and valid values for characteristics are shown in the
discussion of ASSLST. Do not attempt to set characteristics numbered
84 or greater. Do not attempt to set a value for User Number for an
assignable line or a value for Buffer Number for a terminal line.

Before setting any characteristics, ASSSET validates all of the 1listed
pairs. If it detects invalid values or duplicate entries, it does not
set any 1line characteristics, but instead writes a paired entry
(characteristic and error code) for each error into the area pointed to
by errlist_ptr and sets code to ESBPAR.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

8-35 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

NTSLTS

Purpose

NTSLTS returns information about a PRIMOS line used for LAN terminal
service (LTS).

Usage

DCL NT$LTS ENTRY (FIXED BIN(15), FIXED BIN(15), CHAR(16) VAR,
FIXED BIN(15), CHAR(6), FIXED BIN(15));

CALL NTSLTS (primos_line_number, media_type, LTS_name,
LTS_line, MAC_address, code);

Parameters

primos_line_number
INPUT. A PRIMOS line number. The line number can range from 1024
to 1535. The 1line can be either a login or an assignable line
across network terminal service.

media_type
OUTPUT. The media type. Possible values are:

0 IEEE 802.3 Ethernet

LTS _name
OUTPUT. The LTS name corresponding to the media type and Media
Access Control (MAC) address for the LTS. This field is blank and
NTSLTS returns a zero return code if the unconfigured LTS option is
utilized and this is not a configured LTS.

LTS_line

OUTPUT. Physical line number on LTS for connected line. Must
range from 0 to 7.

MAC_address

OUTPUT. The Media Access Control (MAC) address for the connection
corresponding to the PRIMOS line number requested.

First Edition, Update 2 8-36

J

J J

'a
r

3 9

NTSLTS SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

code
OUTPUT. The status code. Possible values are:
E$SOK The call to NTSLTS was completed without error.
ESNTNS NTS is not currently started.

ESBDEV Specified line is not a valid network terminal
service line.

ESLNOC The PRIMOS line is not currently connected.

Discussion

NTSLTS is a direct-entrance call that returns the media type, LAN
Terminal Service (LTS) logical name, LTS line number, and Media Access
Control (MAC) address for network terminal service lines in PRIMOS.

If the LTS 1logical name is not configured, as in the case of
unconfigured LAN Terminal Services allowed on the Local Area Network
(LAN), the LTS logical name returned is null. NTSLTS returns valid
information only if the NTS line is connected.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

Example

The following code from an external logout program receives an LTS_name
from NTSLTS, determines whether it is the name of a configured LTS, and
if it is, calculates the proper surcharge for the amount of time used.

DCL chargeable_lts_names(3) char(l6) var init("1ltsl’,’1lts2’,’
lab-connect’) ;

DCL LTS_rates(0:3) fixed bin(15) init(0,1,3,2); /* In cents/min. */

CALL NTSLTS (my_line, media_type, LTS_name, LTS_line, MAC_address,code):;
If code = 0 then
If LTS_name “= ‘’ then do ; /* Configured LTS - see if we should
apply surcharge for use */

charge_index Index (chargable_lts_names,’ ' ||LTS_namel |’ ');

charge_index 0;

Do i =1 to 3 while (charge_index = 0);

If LTS_name = chargable_lts_names (i) then
charge_index = i:

end;
LTS_charge = LTS_rates(charge_index) * connect_time;

8-37 First Edition, Update 2

)

)

PART IV

APPLICATION LIBRARY

)

3

9
Introduction to
Application Library

GENERAL DESCRIPTION

Part IV of this Volume contains descriptions of the Application
Library, called APPLIB for its subroutines written in R-Mode and VAPPLB
for those in V-Mode. The Application Library 1is a user-oriented
library that provides a set of service routines, designed for ease of
use. In many cases, the APPLIB or VAPPLB routines call a lower-level
routine, filling in arguments that the caller isn’t concerned about.
The routines may also reformat the data that the lower-level routine
returns. The use of APPLIB or VAPPLB routines avoids a duplication of
effort and provides a consistent interface for the terminal user.

All of these routines are written as FORTRAN functions. When used as
such, they return one -- and only one -- of the following:

e A status indication (a FORTRAN logical .TRUE. or .FALSE.)
e An appropriate wvalue
e An alternate value or format of a returned argument

e A code that must be decoded

9-1 First Edition

SUBROUTINES, VOLUME IV

All error detection, reporting, and, if possible, recovery are
performed by the routine, which returns only an indication of success
or failure. This simplified error-reporting scheme assures the user
that the error is reported and all possible recovery procedures have
been tried.

These routines may be used either as subroutines or as functions that
return a value. If you use them as functions, be aware that the
logical value returned is a .TRUE. or .FALSE. according to FORTRAN
conventions. If you use them as subroutines, be aware that there is no
code parameter provided for error detection. You are therefore urged
to use the function form.

Since FORTRAN logical values are returned by these functions (as
opposed to PL/I logical values, for example, returning a single bit),
the Usage descriptions are given in FTN. Programmers in other
languages should consult the chapter treating that language in Volume I
to see how to handle these values.

HOW TO USE PART IV

Refer to the following chapters for descriptions of the indicated
categories of functions provided by the Applications library:

Chapter 10: String Manipulation Routines
Chapter 11: User Query Routines

Chapter 12: System Information Routines
Chapter 13: Randomizing Routines

Chapter 14: Conversion Routines

Chapter 15: File System Routines

Chapter 16: Parsing Routine

FORMAT SUMMARY

Below is a brief summary of the calling sequences for all the
VAPPLB and APPLIB routines. The type codes are defined as:

Type Code Description
L LOGICAL
I INTEGER*2 or INTEGER*4
I*2 INTEGER*2
R REAL
DP DOUBLE PRECISION or REAL*8
First Edition 9-2

J

J

)

)

Group

String

User Query

Information

Randomizing

Conversion

Name

Type

CSTRS$SA
CSUBSA
FILLSA
FSUBSA
GCHRSA
JSTRSA
LSTRSA
LSUBSA
MCHRS$SA
MSTRSA
MSUBSA
NLENSA
RSTRSA
RSUBSA
SSTRS$A
SSUBSA
TREESA

TYPESA .

RNAMSA
RNUMSA
RNAMSA
RNUMSA
YSNOSA

CTIMSA
DATESA
DOFYS$A
DTIMSA
EDATSA
TIMESA

RANDSA
RNDISA

CASESA
CNVASA
CNVBSA
ENCDSA
FDATSA
FEDTS$A
FTIMSA

HEBEHEHEPHBE B

P
P
P

oYt HPEBP

INTRODUCTION TO APPLICATION LIBRARY

Arguments

(A, ALEN, B, BLEN)

(3, ALEN, AFC, ALC, B, BLEN, BFC, BLC)

(NAME, NAMLEN, CHAR)

(STRING, LENGTH, FCHAR, LCHAR, FILCHAR)
(FARRAY, FCHAR)

(KEY, STRING, LENGTH)

(A, ALEN, B, BLEN, FCP, LCP)

(A, ALEN, AFC, ALC, B, BLEN, BFC, BLC, FCP, LCP)
(TARRAY, TCHAR, FARRAY, FCHAR)

(A, ALEN, B, BLEN)

(A, ALEN, AFC, ALC, B, BLEN, BFC, BLC)
(NAME , NAMLEN)

(STRING, LENGTH, COUNT)

(STRING, LENGTH, FCHAR, LCHAR, COUNT)
(STRING, LENGTH, COUNT, FILCHAR)

(STRING, LENGTH, FCHAR, LCHAR, COUNT, FILCHAR)
(NAME, NAMLEN, FSTART, FLEN)

(REY, STRING, LENGTH)

(MSG,MSGLEN, NAMKEY , NAME , NAMLEN)
(MSG,MSGLEN, NUMKEY, VALUE)

(MSG, MSGLEN, NAMKEY , NAME , NAMLEN)
(MSG, MSGLEN, NUMKEY, VALUE)

(MSG, MSGLEN, DEFKEY)

(CPUTIM)
(DATE)
(DOFY)
(DSKTIM)
(EDATE)
(TIME)

(SEED)
(SEED)

(KEY, STRING, LENGTH)
(NUMKEY, NAME, NAMLEN, VALUE)
(NUMKEY, VALUE, NAME , NAMLEN)
(ARRAY, WIDTH,DEC, VALUE)
(DATMOD, DATE)

(DATMOD, DATE)

(TIMMOD, TIME)

9-3 First Edition

SUBROUTINES, VOLUME IV

Group Name Type Arguments
File System CLOSSA L (FUNIT)
DELESA L (NAME , NAMLEN)
EXSTSA L (NAME, NAMLEN)
GENDSA L (FUNIT)
OPENSA L (OPNKEY+TYPKEY+UNTKEY, NAME , NAMLEN, FUNIT)
OPNPS$SA L (MSG, MSGLEN, OPNKEY+TYPKEY+UNTKEY, NAME,
NAMLEN, FUNIT)
OPNV$A L (OPNKEY+TYPKEY+UNTKEY, NAME , NAMLEN, FUNIT,
VERKEY, WTIME, RETRY)
OPVPSA L (MSG,MSGLEN, OPNKEY+TYPKEY+UNTKEY, NAME,
NAMLEN, FUNIT, VERKEY, WTIME, RETRY)
POSNS$A L (POSKEY, FUNIT, POS)
RPOSSA L (FUNIT,POS)
RWNDSA L (FUNIT)
TEMPS$A L (TYPKEY,NAME, NAMLEN, FUNIT)
TRNCSA L (FUNIT)
TSCNSA L (KEY,FUNITS, ENTRY,MAXSIZ,
ENTSIZ,MAXLEV, LEV,CODE)
UNITSA L (FUNIT)
Parsing CMDLS$A L (KEY, KWLIST, KWINDX, OPTBUF, BUFLEN
OPTION, VALUE, KWINFO)

NAMING CONVENTIONS

All APPLIB and VAPPLB routines follow a consistent naming convention
designed to avoid the possibility of a conflict with user-written
routines and system routines. They all have a four-letter mnemonic
name and the suffix $A. For example, the routine to open a temporary
file: is named TEMPSA.

Note

While all subroutines in APPLIB/VAPPLB use a $A suffix, not
every subroutine with this suffix belongs to this library.

Subroutines used internally by APPLIB routines have a suffix of $$A.
Do not use these subroutines under ordinary circumstances.

Keys

Many routines have options which are specified by named parameter keys
which all begin with the prefix A$. All parameter keys are defined in

a $INSERT file named SYSCOM>ASKEYS.INS.language. The key names
following the A$ prefix are three- or four-letter mnemonics specifying
the allowable options for the various routines. They are INTEGER*2

data types. In addition, the FORTRAN version of this file supplies all
the appropriate FUNCTION type declarations for the application
routines. Volume I provides a listing of SYSCOM>ASKEYS with the

First Edition 9-4

))

YY)

INTRODUCTION TO APPLICATION LIBRARY

decimal value for each key. Please read the chapter on your language
interface to see how to use this file.

LIBRARY IMPLEMENTATION POLICIES

VAPPLB and its R-mode version, APPLIB, exist as independent libraries
in the UFD LIB.

Caution

R-mode subroutines can be called from FTN and PMA in R-mode
only. If you call an R-mode routine from a program in a
different mode, the results are unpredictable. Refer to the
FORTRAN and PMA chapters in Volume I for information on
declaring parameters in FTN and PMA, respectively.

The routines have been coded to make them easily callable from most
other languages, including PL/I and 1977 ANSI FORTRAN, both of which
can automatically generate string length arguments following string
arguments. As a result, in the argument pair name, namlen, the name is
often updated by an application routine, but the namlen argument 1is

never modified. If the namlen argument is not 0 or positive, an error
message is displayed on the wuser terminal. Where applicable, the
function value returned is .FALSE.. The function NLENSA can be used to

determine the operational length of a returned name.

All application routines that either accept keys as arguments, or call
other routines which do, use the SYSCOM>ASKEYS file to define those
keys. Also, these routines do not take advantage of any particular
numerical values these keys may have, in case it should become
necessary either to change these values or to add new keys with
numerical values which do not fit the previous pattern. For example,
there are no computed GOTOs on keys and no range checks for validity of
a key. In this way, 1f a new SYSCOM>ASKEYS file is created, both the
user programs and the routines they call will always agree on the
meaning of a given key. The same is true of the declared types of the
application functions.

Library Building

All routines are compiled into a single binary file which is then
converted into the appropriate library file with the EDB utility. At
present, the only difference between the R-mode and V-mode build
procedures is the FTN compile option used. For APPLIB, all routines
are compiled for 64R-mode loading (LOAD). For VAPPLB, all routines are
compiled for 64V-mode loading (SEG and BIND). An unshared version of
VAPPLB exists in NVAPPLB. In addition, all routines included in VAPPLB

9-5 First Edition

SUBROUTINES, VOLUME IV

are pure procedure and may be loaded into the shared portion of a
shared procedure. When you use BIND and then specify VAPPLB, the
system selects APPLICATION_LIBRARY.RUN, another version of the shared
routines used for the EPF environment.

STRING MANIPULATION ROUTINES

The string manipulation routines operate on packed strings, unless
stated otherwise. Most of the routines in this section require that
the maximum length of a string (in characters) be passed as an
argument. The maximum length is the actual storage allocated for that

string in bytes or characters (including any trailing blanks). The
operational length of a string does not include trailing blanks, so it
may be shorter than the maximum length. (See Figure 9-1.) Since the

length of a string is specified as an INTEGER*2 variable, the maximum
possible length is 32767 characters.

MIY|IN]J]A|MI]E

-«---- Operational Length ----»

- Maximum Length

\j

Maximum Length and Operational Length
Figure 9-1

The majority of routines that operate on entire strings first truncate
them to their operational length. The routines that operate on
substrings treat any trailing blanks as part of the substring.

All string-length specifications and substring-delimiting character
positions are checked for validity and must conform to the following
rules:

e Maximum string-length specifications must be greater than or
equal to 0. A value of 0 indicates a null or empty string.

e Substring-delimiting character positions must be greater than or
equal to 0. The length of the substring must be 1less than or
equal to the physical string length. The beginning character
position must be less than or equal to the ending character
position. A value of 0 for either the starting or ending
character position indicates a null substring.

If these rules are violated, an error message will be displayed and the
logical functions will be .FALSE..

First Edition 9-6

N
“N

3)

INTRODUCTION TO APPLICATION LIBRARY

USER QUERY ROUTINES

These routines provide a convenient means to input data from the user’s
terminal. Each routine can prompt the terminal user with a customized
message, and then process the user’s response.

FILE SYSTEM ROUTINES

The file system routines in the Applications library give the user a
simple and consistent way to specify the most common file system
operations. Accordingly, the Applications library does not provide the
user with the full capabilities of the file system routines since for
detailed operations it 1is best to wuse the file system routines
themselves (Volume II). This library supports both Sequential Access
Method (SAM) and Direct Access Method (DAM) files. There is no support
for segment directory files, as the MIDAS subsystem provides the higher
level functions with these files.

All routines except Open, Delete, and Check for File Existence use only
the file unit and not the filename. File units are explained in Volume
II. Also, each routine carries the name of its function, as above,
with arguments consisting of only the relevant information, usually
only the file unit number. Note that all filenames, except scratch
files, may be pathnames.

The only complicated routines are the five OPEN routines, because of
the many ways programs can obtain the name of the file they wish to
open and the various options for verification or error recovery. Five
different routines exist to perform the varying levels of complexity.
In this way, the simple operations are represented by simple calling
sequences. Only complex operations need complex argument lists.

All OPEN routines allow selection of the file type (SAM or DAM) and all
but TEMPSA allow specification of the open mode (READ, WRITE, or
READ/WRITE). TEMPS$A (scratch) files are always opened for READ/WRITE.
Table 9-1 shows the routines available for opening.

9-7 First Edition

SUBROUTINES, VOLUME IV

Table 9-1
Ways to Open a File
Open name. OPENSA
Open funit. OPNPSA
Open name, verify, and delay. OPNVSA
Open funit, verify, and delay. OPVPSA
Open scratch file. TEMPSA

All OPEN routines can choose the file unit number wupon which a file
will be opened. The ASGETU key is used for this purpose and the PRIMOS
file unit selected by the routine will be returned to the user (in the
argument funit). If ASGETU is not used, the user must provide the
routine with a usable file unit number.

Several of these subroutines have arguments called verkey, which allows
verification of the wvalidity of the file operation requested.
Verification provides the following options:

1. Verify that the file is new; otherwise, verify that it is all
right to modify a file which already exists.

2. Verify that the file may be modified and determine whether an
existing file is to be overwritten or appended.

3. Verify that the file exists; that is, do not allow creation of
a new file. Note that if the open mode is READ, this 1is the
only possible verification option.

In case of failure of an operation, the argument wtime allows the
subroutine to delay the time specified, then try again the number of
times allowed by retry. wtime provides the following options:

1. If, and only if, the file is "IN USE", wait a supplied number
of seconds (elapsed time) and try again.

2. Repeat step 1 a specified number of times.

First Edition 9-8

J

)

J

M)

INTRODUCTION TO APPLICATION LIBRARY

SYSCOM>ASKEYS

The keys needed for FORTRAN programs are given in:
SYSCOM>ASKEYS>ASKEYS.INS.FTN
The Pascal and PL/I programmers should use the ASKEYS.INS.file in

SYSCOM>ASKEYS that is applicable to their language.

The listings from the SYSCOM UFD use octal values. Refer to the
Appendix section of Volume I for a listing of keys with decimal values.

9-9 First Edition

)

10
String Routines

SUMMARY OF STRING MANIPULATION ROUTINES

This chapter contains descriptions of the following string manipulation
routines from the APPLIB/VAPPLB subroutines library.

CSTRSA
CSUBSA
FILLSA
FSUBSA
GCHRSA
JSTRSA

LSTRSA
LSUBSA
MCHRSA
MSTRSA
MSUBSA
NLENS$A
RSTRSA
RSUBS$A
SSTRSA
SSUBSA
TREES$A
TYPESA

Compare two strings for equality.

Compare two substrings for equality.

Fill a string with a character.

Fill a substring with a given character.

Get a character from a packed string.

Left-justify, right-justify, or center a
string within a field.

Locate one string within another.

Locate one substring within another.

Move a character between packed strings.

Move one string to another.

Move one substring to another.

Determine the operational length of a string.

Rotate string left or right.

Rotate substring left or right.

Shift string left or right.

Shift substring left or right.

Test for pathname.

Determine string type.

10-1 First Edition

SUBROUTINES, VOLUME IV

CSTR$A

Purpose

CSTRSA is a logical function used to compare two strings for equality.
The function returns a logical value of .TRUE. if each character in
string a matches the corresponding character in string b, or if both
strings are null (length equal to 0). Otherwise, the function returns
.FALSE.. Only the operational lengths are wused in the comparison.
(Trailing blanks are ignored.) If the two strings are not of equal
length, the result is .FALSE..

Usage
INTEGER*2 a(l), alen, b(l), blen
LOGICAL log
log = CSTR$A(a, alen, b, blen)
Parameters
a

INPUT. String to be compared, packed two characters per halfword.
Internal data type of the array does not matter.

alen

INPUT. Length of a, in characters. Length must be 0 or greater.

INPUT. String to be compared against, packed two characters per
halfword. 1Internal data type of the array does not matter.

blen

INPUT. Length of b in characters. Length must be 0 or greater.

First Edition 10-2

) J

39

D

CSTRSA

Loading and Linking Information

APPLIB - R—-Mode
NVAPPLB -—- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by CSTRSA

CSUBSA and NLENS$A

10-3

STRING ROUTINES

First Edition

SUBROUTINES, VOLUME IV

CSUBS$A

Purpose

CSUBSA is a logical function used to compare substrings for equality.

Usage
INTEGER*2 a(l), alen, afc, alc
INTEGER*2 b(l), blen, bfc, blc
LOGICAL log

log = CSUBSA(a, alen, afc, alc,

X b, blen, bfc, blc)
Parameters
a
INPUT. Array containing substring to be compared, packed two
characters per halfword. Internal data type of the array does not
matter.
alen
INPUT. Length of a, in characters. Length must be 0 or greater.
afc
INPUT. First character position of substring in a
alc
INPUT. Last character position of substring in a.
b
INPUT. Array containing substring to be compared against, packed
two characters per halfword. Internal data type of the array does
not matter.
blen

INPUT. Length of b in characters. Length must be 0 or greater.

First Edition 10-4

))

)

CSUBSA STRING ROUTINES

bfc
INPUT. First character position of substring in b.
blc

INPUT. Last character position of substring in b.

Discussion

If each character in the a substring matches the corresponding
character in the b substring, or both substrings are null (length equal
to 0), the function will be .TRUE.. If two corresponding characters do
not match, or 1if the lengths of the substrings are not equal, the
function will be .FALSE..

Figure 10-1 is a representation of the arguments to CSUBSA.

A
o
3
'

Arguments to CSUBSA
Figure 10-1

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

10-5 First Edition

SUBROUTINES, VOLUME IV

FILL$A

Purpose

FILLSA is an INTEGER function that fills the name buffer with the fill
character char supplied. The function is INTEGER*2 or INTEGER*4, but
its value is always 0.

Usage
INTEGER*2 name(l), namlen, char(l)
INTEGER*2 rt_val
C rt_val may alsc be declared INTEGER*4
rt_val = FILLSA(name, namlen, char)
(or)
CALL FILL$A(name, namlen, char)
Parameters

name

INPUT. Name of buffer to fill, packed two characters per halfword.
Data type does not matter.

namlen
INPUT. Length of name in characters (INTEGER*2).
char
INPUT. Fill character,in FORTRAN Al format, used to fill the

buffer. The single char is loaded into the left byte of char; its
data type does not matter.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLRB - V-Mode

Other Routines Called by FILLSA

CSUBSA and NLENSA

First Edition 10-6

))

)

)

STRING ROUTINES

FSUB$A

Purpose

FSUBSA is a logical function used to fill a character substring with a
specified character. The substring delimited by fchar and lchar is
filled with the character specified in filchar. The string parameters
are checked for validity. If an error is found, the function is
.FALSE. and a message is printed. If all parameters are valid, the
function will be .TRUE..

Usage

INTEGER*2 string(l), length, fchar, lchar, filchar
LOGICAL log

LOG = FSUBSA(string, length, fchar, lchar, filchar)
(or)
CALL FSUBSA(string, length, fchar, lchar, filchar)
Parameters

string

INPUT/QUTPUT. String containing substring to be filled, packed two
characters per halfword. Data type does not matter.

length

INPUT. Length of string in characters.
fchar

INPUT. First character position of substring.
lchar

INPUT. Last character position of substring.
filchar

INPUT. Fill character in FORTRAN Al format. Left byte of filchar
holds the character; its data type does not matter.

10-7 First Edition

SUBROUTINES, VOLUME IV

Loading and Linking Information

APPLIB -
NVAPPLB -—-
VAPPLB -=

First Edition

R-Mode
V-Mode (unshared)
V-Mode

10-8

FSUBSA

)

J

)

GCHR$A

Purpose

GCHRSA is an INTEGER*2 or INTEGER*4 function which extracts a single
character from a packed string. It is intended for use only by FORTRAN
programmers. The function value will be the accessed character in
FORTRAN Al format (with blank padding on the right). The character
returned will be left-justified and padded with blanks.
Usage

INTEGER*2 farray(l), fchar

INTEGER*2 rt_val
o] rt_val may be declared INTEGER*4

rt_val = GCHR$A(farray, fchar)

(or)

CALL GCHRS$A(farray, fchar)

Parameters

farray

INPUT. Source that is the packed array. 1Its internal data type
does not matter.

fchar

INPUT. Character position in farray to be returned.

Discussion
This routine replaces the FORTRAN statement:
CHAR = FARRAY (FCHAR)

where FARRAY 1is declared LOGICAL*1 (IBM FORTRAN) or of a one-character
data type.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB —-— V-Mode (unshared)
VAPPLB - V-Mode

10-9 First Edition

SUBROUTINES, VOLUME IV

)

JSTR$A -

Purpose
This logical function is used to left-justify, right-justify, or center
a string within itself. The function is .TRUE. if justification is

successful; it is .FALSE. if the length is less than 0 or if a bad
key is used.

Usage

INTEGER*2 key string(length), length

LOGICAL log ‘\

LOG = JSTRS$A(key, string, length) —
(or)
CALL JSTRS$A(key, string, length)

Parameters
key

INPUT. Determines direction of justification. Possible values
are:

ASRGHT Right-justify
ASLEFT Left—justify
ASCNTR Center

string ﬂ

INPUT/QUTPUT. String to be justified, packed two <characters per -
halfword. Data type does not matter.

length

INPUT. Length of string in characters. It must be greater than 0.

First Edition 10-10 «

SNRN

JSTRS$A

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB —- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by JSTRS$A

NLENS$A, FILLSA, MSUBSA, GCHRSA.

10-11

STRING ROUTINES

First Edition

SUBROUTINES, VOLUME IV

LSTR$A

Purgose

LSTRSA is

Usage

INTEGER*2
INTEGER*2

a(l), alen, b(l), blen
fcp, lcp

LOGICAL log

log = LSTR$A(a, alen, b, blen, fcp, lcp)
(or)
CALL LSTRSA(a, alen, b, blen, fcp, lcp)

Parameters
a

INPUT.

String to be located, packed two characters

a logical function used to locate one string within another.

per halfword.

Internal data type of the array does not matter.

alen

INPUT. Number

INPUT. String
Data type does

blen
INPUT. Length of b, in characters.

fcp
OUTPUT. First character position in b of
string a.

lcp
OUTPUT. Last character position in b
string a.

First Edition 10-12

of characters in a.

to be searched, packed two characters per halfword.

not matter.

substring that matches

of substring that matches

J)

)

LSTRSA STRING ROUTINES

Discussion

LSTRSA searches string b for the first occurrence of string a. If
string a is found, the function returns .TRUE., and fcp and lcp will be
equal to the character positions of the substring in b that matches
string a. If string a is not found, or if either string is null
(length equal to 0), the function returns .FALSE., and fcp and lcp will
be equal to 0. Each string is logically truncated to its operational
length before the search is performed (trailing blanks are ignored).

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by LSTRSA

LSUBSA and NLENSA

10-13 First Edition

SUBROUTINES, VOLUME IV

LSUBSA

))

Purpose

This logical function is used to locate one substring within another.

Usage

INTEGER*2 a(l), alen, afc, alc

INTEGER*2 b(l), blen, bfc, blc

INTEGER*2 fcp, lcp

LOGICAL log

log = LSUB$A(a, alen, afc, alc, b, blen, bfc, blc, fcp, lcp)
(or)

CALL LSUBSA(a, alen, afc, alc, b, blen, bfc, blc, fcp, lcp)

Parameters

a

INPUT. Array containing substring to be located, packed two
characters per halfword. Data type does not matter.

alen

INPUT. Length of a, in characters (INTEGER*2).
afc

INPUT. First character position of substring in a.
alc

INPUT. Last character position of substring in a (INTEGER*2).

INPUT. Array containing substring to be searched, packed two
characters per halfword. Data type does not matter.

blen

INPUT. Length of b, in characters (INTEGER*2).

First Edition 10-14

3)

LSUBSA STRING ROUTINES

bfc

INPUT. First character position of substring in b.
blc

INPUT. Last character position of substring in b.
fcp

OUTPUT. First character position in b of substring that matches
substring in a.

lcp
OUTPUT. Last character position in b of substring that matches
substring in a.
Discussion
LSUBSA searches the substring contained in b for the first occurrence
of the substring contained in a. If a match is found, fcp and lcp will
be equal to the character positions in b of the matching substring and
the function is .TRUE..
If a matching substring cannot be found or if either substring is null
(length equal to 0), the function will be .FALSE. and fcp and lcp will
be equal to 0. (.TRUE. and .FALSE. are the FORTRAN logical values.)

Figure 10-1, included in the description of CSUBS$A, illustrates the
passage of arguments to both LSUBS$SA and CSUBSA.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

10-15 First Edition

SUBROUTINES, VOLUME IV

MCHR$A

Purpose

MCHRSA is an INTEGER function that moves a character from one packed
string to another.

Usage
INTEGER*2 tarray(l), tchar, farray(l), fchar
INTEGER*2 rt_val
C rt_val may be declared INTEGER*4
rt_val = MCHRS$A(tarray, tchar, farray, fchar)
(or)
CALL MCHRS$A(tarray, tchar, farray, fchar)
Parameters
tarray
INPUT. Returned array of characters, packed two per halfword, firs
t
character on the left.
tchar
INPUT. Position in tarray of the character to be received.
farray
INPUT. Source string. Data type does not matter.

fchar

INPUT. Character position in farray of character to be moved.

First Edition 10-16

))

Y

)

MCHRS$A STRING ROUTINES

Discussion
This routine replaces the FORTRAN statement:
TARRAY (TCHAR) = FARRAY (FCHAR)

when TARRAY and FARRAY are declared LOGICAL*1 (IBM FORTRAN) or of a
one-character data type. Only one character in TARRAY is replaced.

The function value will be the character that was moved in FORTRAN Al

format, that is, the character in the left-most byte, right padded with
blanks.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

10-17 First Edition

SUBROUTINES, VOLUME IV

MSTRS$A

Purpose

MSTRSA is an INTEGER*2 or INTEGER*4 function used to move the source
string to the destination string.

Usage

INTEGER*2 a(l), alen, b(l), blen
INTEGER*2 rt_val
c rt_val may be declared INTEGER*4
rt_val = MSTR$A(a, alen, b, blen)
(or)
CALL MSTRS$A(a, alen, b, blen)

Parameters

a

INPUT. Source string, packed two characters per halfword. Data
type does not matter.

alen

INPUT. Length of a, in characters.

b
OUTPUT. Destination string, packed two characters per halfword.
Data type does not matter.

blen
INPUT. Length of b, in characters.

Discussion

If the source string is longer than the destination string, it will be
truncated. If it 1is shorter, it will be padded with blanks. The
source and destination strings may overlap. The function value will be
equal to the number of characters moved (excluding blank padding) . If
either string is null (length equal to 0), no characters are moved and
the function value will be equal to 0.

First Edition 10-18

))

J

N

| -

MSTRSA

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -—- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by MSTRSA

MSUBSA

10-19

STRING ROUTINES

First Edition

SUBROUTINES, VOLUME IV

MSUBS$A

Purpose

MSUBS$A is an integer function used to move the source substring
contained in a to the destination substring contained in b.

Usage

INTEGER*2 a(l), alen, afc, alc

INTEGER*2 b(l), blen, bfc, blc

INTEGER*2 rt_val

rt_val = MSUBSA(a, alen, afc, alc, b, blen, bfc, blc)

(or)

CALL MSUBSA(a, alen, afc, alc, b, blen, bfc, blc)
Parameters
a

INPUT. Array containing source substring, packed two characters
per halfword. Data type does not matter.

alen
INPUT. Length of a, in characters.
afc

INPUT. First character position of substring in a, packed two
characters per halfword. Data type does not matter.

alc

INPUT. Last character position of substring in a.

b
INPUT/OUTPUT. Array containing destination substring, packed two
characters per halfword. Data type does not matter.

blen
INPUT. Length of b, in characters (INTEGER*2).

First Edition 10-20

J)

J

)

MSUBSA STRING ROUTINES

bfc
INPUT. First character position of substring in b.
blc

INPUT. Last character position of substring in b.

Discussion

If the source substring is longer than the destination substring, it
will be truncated. If it is shorter, it will be padded with blanks.
The source and destination substrings may overlap.

If either substring is null (length equal to 0), no characters are

moved and the function will be equal to 0. Otherwise it is equal to
the number of characters moved (excluding blanks used for padding).

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by MSUBSA

MCHRS$A

10-21 First Edition

SUBROUTINES, VOLUME IV

))

NLENS$A

Purpose

NLENSA is an INTEGER*2 function that returns, as its function value,
the actual length (not including trailing blanks) of the ASCII string
in name.

Usage

INTEGER*2 name(l), namlen
INTEGER*2 rt_val

rt_val = NLENS$A (name, namlen)
(or)
CALL NLENSA (name, namlen)
Parameters

name

INPUT. Name buffer to be tested, packed two characters per
halfword. Data type does not matter.

namlen

INPUT. Length of the variable name, possibly containing blanks.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -—- V-Mode (unshared)
VAPPLB - V-Mode

First Edition 10-22

M)

STRING ROUTINES
RSTRS$A

Purpose

RSTRSA is a logical function used to rotate a character string left or
right. The string is truncated to its operational 1length before the
rotate is performed; therefore, trailing blanks are not included in

count. If length is 1less than 0, the function returns .FALSE.,
otherwise the function returns .TRUE..

Usage

INTEGER*2 string(l), length, count
LOGICAL log

log = RSTR$A(string, length, count)
(or)
CALL RSTRS$A(string, length, count)
Parameters

string

INPUT/OUTPUT. String to be rotated, packed two characters per
halfword. Data type does not matter.

length
INPUT. Length of string in characters.
count

INPUT. Number of positions to rotate string. Negative count
causes left rotate, positive count right rotate.

Discussion

This routine wuses an algorithm that minimizes temporary storage and
execution time. One word of temporary storage is used and the number
of iterations necessary to rotate a string is equal to the length in
characters of the string. A character is moved directly from its
original position to its final destination position. Figure 10-2 shows
the results of two calls to RSTRSA.

10-23 First Edition

SUBROUTINES, VOLUME IV RSTRSA

1 2 415]6

string e

A

4 | 5161 2

After RSTR$A (string, 6, — 3)

1 214} 5] 6

After RSTR$A (string, 6, 2)

Use of RSTRSA
Figure 10-2

Example

Perhaps you have COBOL programs that are to be converted to CBL
programs. During conversion CBL often automatically corrects some of
the incompatibilities from your old COBOL programs. Refer to the COBOL
to CBL Conversion Guide (MAN10002-1LA) to handle the more unusual
conversion situations.

Furthermore, perhaps your COBOL programs previously had been submitted
to the SEG 1link/loader. After you update these programs to CBL, you
will also want to BIND them. Thereafter the system will dynamically
load your programs. You no 1longer risk overwriting one executable
runfile with another.

The following example of a program performing the character rotations
above also shows what happens to ROTATE.COBOL when it is renamed and
then recompiled as ROTATE.CBL. As indicated, you can BIND and RESUME
the program as is. (Nevertheless, it would be prudent to first make
the recommended changes.)

First Edition 10-24

)

J

3)

3

RSTRS$A

OK SLIS

STRING ROUTINES

T ROTATE.COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. ROTATE.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 STRINGl1 PIC X(32) VALUE ’12 456
01 LENGTH COMP.

01 CNT COMP .
PROCEDURE DIVISION.
001-BEGIN.

MOVE 6 TO LENGTH.

MOVE -3 TO CNT.

CALL ’'RSTRSA’ USING STRING1l, LENGTH, CNT.
EXHIBIT STRING1.

MOVE 2 TO CNT.

CALL 'RSTRS$A’ USING STRING1l, LENGTH, CNT.
EXHIBIT STRING1.

STOP RUN.

OK CNAME ROTATE.COBOL ROTATE.CBL

OK CBL

ROTATE

[CBL Re

ERROR 1
COMPUTA

ERROR 1
COMPUTA

[2 OBSE
OK BIND

v. 20.2 Copyright (c) Prime Computer, Inc. 1985]

75 SEVERITY 1 LINE 7 COLUMN 8 [OBSERVATION,
TIONAL items with no picture clause are assumed

75 SEVERITY 1 LINE 8 COLUMN 8 [OBSERVATION,

SEMANTICS]
to be s9(4).

SEMANTICS]

TIONAL items with no picture clause are assumed to be s9(4).

RVATIONS IN PROGRAM: ROTATE.CBL]
-LO ROTATE -LI VCOBLB -LI VAPPLB -LI

[BIND Rev. 20.2 Copyright (c) 1985, Prime Computer, Inc.]
BIND COMPLETE

OK R RO

STRING1
STRING1
OK

Loading and

TATE
= 45612
12456

Linking Information

APPLIB -=
NVAPPLB --
VAPPLB --

R-Mode
V-Mode (unshared)
V-Mode

10-25 First Edition

SUBROUTINES, VOLUME IV

RSUBS$A

Purpose

RSUBSA is a logical function used to rotate a character substring left
or right. Only the characters of the substring contained in string are
affected. The parameters are checked for validity. If there is an
error, a message is printed and the function will be .FALSE.. If no
error occurs, the function will be .TRUE..

Usage

INTEGER*2 string(l), length, fchar, lchar, count
LOGICAL log

LOG = RSUBSA(string, length, fchar, lchar, count)
(or)
CALL RSUBSA(string, length, fchar, lchar, count)
Parameters

string

INPUT/OUTPUT. String containing substring to be rotated, packed
two characters per halfword. Data type does not matter.

length

INPUT. Length of string in characters.
fchar

INPUT. First delimiting character position of substring.
lchar

INPUT. Last delimiting character position of substring.

count

INPUT. Number of positions to rotate substring. A negative count

causes left rotate, a positive count causes right rotate.

First Edition 10-26

))

YY)

D

RSUBSA STRING ROUTINES

Discussion

This routine uses an algorithm that minimizes temporary storage and
execution time. One word of temporary storage is used and the number
of iterations necessary to rotate a string is equal to the length in
characters of the string. A character is moved directly from its
original position to its final destination position.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB —- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by RSUBSA

MCHRSA

10-27 First Edition

SUBROUTINES, VOLUME IV

SSTR$A

Purgose

SSTR$A is a logical function used to shift a character string left or
right. The string is shifted the specified number of characters, and
the vacated positions are padded with the specified fill character.
Trailing blanks are not included in the shift. If length is less than
0, an error message is printed, the function 1is .FALSE., and no
characters are shifted. If no error occurs, the function is .TRUE..

Usage

INTEGER*2 string(l), length, count, fil _ch(1)
LOGICAL log

log = SSTRSA(string, length, count, £fil ch)
(or)
CALL SSTR$A(string, length, count, fil_ch)
Parameters

string

INPUT/OUTPUT. Character string to be shifted, packed two
characters per halfword. Data type does not matter.

length

INPUT. Length of string in characters. Must be greater than or

equal to 0.
count
INPUT. Number of positions to shift string. A negative count

causes left shift, positive count causes right shift.
fil_ch

INPUT. Fill character which will pad the vacated positions.
fil _chis specified in FORTRAN Al format (two characters per

halfword and blank-padded on the right). Data type does not
matter.
First Edition 10-28

J

J

D)

B

SSTRSA

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -—- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by SSTRSA

FSUBSA, MCHRS$A, and NLENS$A.

10-29

STRING ROUTINES

First Edition

SUBROUTINES, VOLUME IV

SSUBS$A

Purpose

SSUBSA is a logical function used to shift a character substring left
or right. The substring is shifted the specified number of characters
and the vacated positions are padded with the specified fill character.
Any trailing blanks are included in the shift. The parameters are
checked for validity. An error causes a message to be printed and the
function will be .FALSE.. If no error occurs, the function will be
.TRUE.. (.TRUE. and .FALSE. are the FORTRAN logical values.) If the

substring is null, or length is equal to 0, there will be no shift.

Usages

INTEGER*2 string(l), length, fchar, lchar, count, fil ch
LOGICAL log

log = SSUBS$A(string, length, fchar, lchar, count, fil _ch)
(or)
CALL SSUBSA(string, length, fchar, lchar, count, fil_ch)
Parameters
string

INPUT/OUTPUT. String containing substring to be shifted, packed
two characters per halfword. Data type does not matter.

length

INPUT. Length of string in characters.
fchar

INPUT. First delimiting character position of substring.
lchar

INPUT. Last delimiting character position of substring.
count

INPUT. Number of positions to shift substring. A negative count
causes left shift, positive count causes right shift.

First Edition 10-30

))

J) I

D)

N

SSUBSA STRING ROUTINES

fil ch
INPUT. Fill character with which to pad vacated positions.

filchar is specified in Al format (two characters per halfword and
right-padded with blanks). Data type does not matter.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by SSUBSA

FSUBSA and MCHRSA.

10-31 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

TREES$A

Purpose

TREESA checks a pathname for syntactical correctness.

Usage

INTEGER*2 name(l), namlen, fst, flen
LOGICAL log

log = TREESA (name, namlen, fst, flen)
(or)
CALL TREESA(name, namlen, fst, flen)
Parameters

name

INPUT. Array containing filename, packed two characters per
halfword. Data type does not matter.

namlen
INPUT. Length of name in characters.
fst

OUTPUT. Number returned indicating the character position for the
first character in the final name within name.

flen

OUTPUT. Length in characters of the final name within the filename
name .

Discussion

TREESA is a logical function that scans a filename and checks it for
syntactical correctness. If the pathname is syntactically correct, the
function is .TRUE. and if not, it is .FALSE.. In addition, the
location of the final name (or entire name if not part of a pathname)
can be determined from the values returned in fst and flen. Note that
if the name is empty, fst and flen are both 0.

The following example illustrates the use of TREESA from a CBL program.
The program has already been submitted to BIND. Its runfile is located

First Edition, Update 2 10-32

4 J

J J

S)

A

TREESA

STRING ROUTINES

within the current subdirectory, along with the source file (slist
TREE.CBL). It is now Resumed, and interactively executes as shown.
Following the example, Figure 10-3 shows the data layout of the

arguments to TREESA.

Example

OK, SLIST TREE.CBL

IDENTIFICATION DIVISION.
PROGRAM-ID. TREE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 NAME PIC X(32)
01 NAMLEN PIC S9(4)
01 FSTART PIC S9(4)
01 FLEN PIC S9(4)
01 ASCIILEN PIC S99.
PROCEDURE DIVISION.

001-BEGIN.

DISPLAY 'ENTER FILENAME'.
ACCEPT NAME.

DISPLAY 'ENTER LENGTH OF NAME’.
ACCEPT ASCIILEN.

MOVE ASCIILEN TO NAMLEN.

CALL ’'TREESA’ USING NAME, NAMLEN,
EXHIBIT NAME.

EXHIBIT NAMLEN.

EXHIBIT FSTART.

EXHIBIT FLEN.

STOP RUN.

OK, R TREE.RUN

ENTER FILENAME
ACCTS>DATA>SAMDATA>HOURSWORKED
ENTER LENGTH OF NAME

30

NAME = ACCTS>DATA>SAMDATA>HOURSWORKED
NAMLEN = 30

FSTART = 20

FLEN = 11

OK,

10-33

VALUE SPACES.
COMP .
COMP.
COMP .

FSTART, FLEN.

First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

fst

alclc|t]s|>|o]|a|T]a]|>]s]|a|m|p|Aa]T]A]>[H]O]U|R]s|w|O]|R]|K]|E]D
-- - -—-- NAMIEN =~ - - === e e e e »
D aGEEEEEE R flen --------—--=- >

Arguments to TREES$A

Figure 10-3

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -—-- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by TREESA

GCHRSA and NLENSA.

First Edition, Update 2

10-34

J

J) J

M)

STRING ROUTINES

TYPESA

Purgose

TYPESA is a logical function that tests a character string to determine
if it can be interpreted as the type specified by key.

Usage

INTEGER*2 key, string(l), length
LOGICAL log

log = TYPES$A(key, string, length)
(or)
CALL TYPESA(key, string, length)
Parameters

key

INPUT. Indicates the type of test that String will wundergo.
Possible keys are:

ASNAME Can string be interpreted as a name?

ASBIN Can string be interpreted as a binary number?

ASDEC Can string be interpreted as a decimal number?

ASOCT Can string be interpreted as an octal number?

ASHEX Can string be interpreted as a hexadecimal number?
string

INPUT. The string to be tested, packed two characters per
halfword. Data type does not matter.

length

INPUT. Length of string, in characters.

Discussion

A string is interpreted as a name if it contains at least one
alphabetic or special character other than a leading plus or minus: a
binary number if it contains only the digits 0 through 1; a decimal

10-35 First Edition

SUBROUTINES, VOLUME IV TYPESA

number if it contains only the digits 0 through 9. It is an octal
number if it contains only the digits 0 through 7, and is hexadecimal
if it contains only the digits 0 through 9 and the characters A through
F (uppercase only). A number may have a leading sign and any number of
blanks between the sign and the first digit. However, embedded blanks
within the number itself are not allowed. A number must also have at
least one digit.

Leading and trailing blanks are ignored. The function is .TRUE. if
string satisfies the conditions required by the key used; otherwise it
is .FALSE.. A null string (length equal to 0) will return a function
value of .TRUE. only if key is A$SNAME.

Loading and Linking Information

APPLIB - R—-Mode
NVAPPLB -—- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by TYPESA

GCHRS$A and NLENSA.

First Edition 10-36

J)

M)

r

b

SUMMARY OF USER QUERY ROUTINES

11
User Query
Routines

This chapter describes the following User Query Routines, found in the
APPLICATION subroutines library.

RNAMSA
RNUMSA

YSNOSA

Prompt and read a name.

Prompt and read a number (binary, decimal,

octal, or hexadecimal).

INTEGER*4

Ask question and obtain a YES or NO answer.

11-1

First Edition

SUBROUTINES, VOLUME IV

RNAMS$A

PUIEOSG

RNAMSA is a logical function that prints the supplied message prompt
and appends a colon (:) to it. It then reads a user response from the
command stream. If the response is not a legal name, or if the name
provided is too long for the supplied buffer, an error message will be
typed and the message prompt will be repeated. If no name is provided,
or if name contains illegal values (such as a digit or a plus or minus
sign), the value of the function will be .FALSE.. If a legal name is
provided, the function wvalue will be .TRUE.. The caller should be
aware that COMANL and RDTKS (Volume II) are called to read the user
response, and therefore the previous command line entered is
unavailable.

Usage

INTEGER*2 msg(l), msglen, namkey

INTEGER*2 name(l), namlen

LOGICAL log

log = RNAMSA (msg, msglen, namkey, name, namlen)

(or)

CALL RNAMSA (msg, msglen, namkey, name, namlen)

Parameters

msg

INPUT. Message text, packed two characters per halfword. Data
type does not matter.

msglen
INPUT. Message length in characters.
namkey

INPUT. Indicates options for character handling. Keys cannot be
combined. Valid keys are:

ASFUPP Force uppercase.
ASUPLW Do not force uppercase.

ASRAWI Read line as raw uninterpreted text.

First Edition 11-2

))

M)

A

RNAMSA

name

OUTPUT.

type is ASCII.

Returned name, packed two characters per
It must begin with a non-character that is also not

a plus or a minus sign.

namlen

INPUT.

Loading and Linking Information

USER QUERY ROUTINES

halfword. Data

Length of name buffer in characters (maximum 80).

APPLIB -
NVAPPLB --
VAPPLB -

R-Mode
V-Mode (unshared)
V~Mode

11-3

First Edition

SUBROUTINES, VOLUME IV

RNUMS$A

Purpose

RNUMSA is a logical function used to accept numeric data from the user

terminal.

Usage

INTEGER*2 msg(l), msglen, numkey
INTEGER*4 value
LOGICAL log

log = RNUMS$A (msg, msglen, numkey, value)
(or)
CALL RNUMSA (msg, msglen, numkey, value)

Parameters

msg

INPUT. Message text, packed two characters per halfword.

type does not matter.
msglen
INPUT. Message length in characters.

nunmkey

Data

INPUT. Indicates the data type to be verified. Valid keys are:

ASDEC Decimal
ASBIN Binary
ASOCT Octal
ASHEX Hexadecimal

value

OUTPUT. Returned value.

First Edition 11-4

J J

)

RNUMSA USER QUERY ROUTINES

Discussion

The routine prints the user-supplied message and appends the colon (:)
to it. It then reads a user response and if the response is not a
legal number or if the number provided has too many digits for an
INTEGER*4 value, the error will be reported and the message will be
repeated. If no number is provided, the value of the function will be
.FALSE. and value will be 0. If a legal number is provided, the
function will be .TRUE. and the value will be returned in value.

Numbers may be immediately preceded by "+" or "-". Binary numbers may
have a maximum of 31 digits, octal a maximum of 11 digits, decimal a
maximum of 10 digits, and hexadecimal a maximum of 8 digits. Negative
binary, octal, or hexadecimal should not be entered in two’s
complement, but the same as a negative decimal number.

The caller should be aware that COMANL and RDTKSS (see Volume II) are
called to read the user response, and therefore the previous command

line is unavailable.

The operation of this subroutine is shown in Figure 11-1.

Loading and Linking Information

APPLIB - R—-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB -~ V-Mode

11-5 First Edition

SUBROUTINES, VOLUME IV

First Edition

Accept message

Append ‘“:”’ to message
Display message

Error
Message

—>

A

Accept input

'

No

Is
input of

No

correct
type
?

Yes

Is
input of

No

correct
length
?

Yes

Return

How RNUMSA Works
Figure 11-1

11-6

RNUMSA

)

)

YY)

)

USER QUERY ROUTINES

YSNOSA

Purpose

YSNOSA is a logical function that prints the supplied message and
appends the character ™?" to it. It then reads a user response. If
the answer is "YES" or "OK", the function returns .TRUE.. If the
answer is "NO", the function value returns .FALSE.. If an illegal
answer is provided or if no default 1is accepted, the message is
repeated. User responses may be abbreviated to the first one or two
characters.

Usage

INTEGER*2 msg(l), msglen, defkey
LOGICAL log

log = YSNOSA (msg, msglen, defkey)

CALL YSNOSA (msg, msglen, defkey)

Parameters
msg

INPUT. Message text, packed two characters per halfword. Data
type does not matter.

msglen
INPUT. Message length in characters.
defkey
INPUT. A key specifying the default. Valid keys are:
ASNDEF No default accepted.
ASDNO Default is "NO".

ASDYES Default is "YES".

11-7 First Edition

SUBROUTINES, VOLUME IV YSNOSA

Example

OK, SLIST YESNO1l.PASCAL

program main;

{

FORTRAN logicals are incompatible with Pascal boolean data types.
Therefore, interfacing to the applications library from Pascal
can be a problem. The following program shows the easiest way to

determine True and False when calling FORTRAN subroutines with
logicals.

Note: This program assumes that the type of logical returned is
a LOGICAL*2, and only occupies two bytes of memory.

_—— e e -

—~—

const
$INCLUDE ’'SYSCOM>ASKEYS.INS.PASCAL’;

type
msgtype = packed array(l..8] of char;

var
msg : msgtype:’
msglen : integer;

function ysno$a(var s : msgtype; {Pass by ref, msg }
1 : integer; {Pass by value, length of msg }

k : integer) {Pass by value, default keys }

:integer; extern; {Returns FORTRAN logical as integer}

begin
writeln;
msg := 'Yes | No’;
msglen := 8;

if ysno$a(msg, msglen, a$ndef) = ord(true) then
writeln(’0Ok!")
else
writeln (’Absolutely NO!’)
end.

First Edition 11-8

))

J

)

YSNOSA

This program,

stored as YESNO1l.PASCAL,

executed with the following dialogue.

OK, PASCAL YESNO1l

USER QUERY ROUTINES

may be compiled, loaded, and

[PASCAL Rev. 20.2.B2 Copyright (c) 1986, Prime Computer, Inc.]
0000 ERRORS [PASCAL Rev. 20.2]

OK, BIND

[BIND Rev. 20.2 Copyright (c) 1985, Prime Computer, Inc.]
: LO YESNO1l
: LT PASLIB
: LI VAPPLB

LI

BIND COMPLETE

: FILE

OK, RESUME YESNO1l

Yes | No? YES

Ok!

OK, R YESNO1

Yes | No? NO
Absolutely NO!

CK,

Loading and Linking Information

APPLIB -
NVAPPLB --
VAPPLB --

R-Mode
V-Mode (unshared)
V-Mode

11-9

First Edition

Y

)

12
System Information
Routines

SUMMARY OF SYSTEM INFORMATION ROUTINES

This chapter describes the following System Information Routines, found
in the APPLICATION subroutines library.

CTIMSA
DATESA
DOFYSA
DTIMSA
EDATSA
TIMESA

CPU time since login.

Today’s date, American style.

Today’s date as day of year ("Julian" date).
Disk time since login.

Today’s date, European (military)style.

Time of day.

12-1 First Edition

SUBROUTINES, VOLUME IV

CTIM$A

Purpose

CTIMSA is a double precision function that returns CPU time
since login, in seconds as the function value, and as centiseconds in

the cputim argument.

Usage
INTEGER*4 cputim
REAL*8 rt_val
rt_val = CTIMSA (cputim)
(or)
CALL CTIMSA (cputim)
Parameters
cputim

OUTPUT. CPU time in centiseconds.
Discussion

The function value will be CPU time elapsed since login,
This value may be received as REAL*8.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

First Edition 12-2

in

elapsed

seconds.

J

)

)

SYSTEM INFORMATION ROUTINES
DATESA

Purpose

DATESA is a double-precision function that returns the date in the
argument date in the form "DAY, MON DD YYYY" (for example, TUE, FEB 23
1982).

The value of the function is the date in the form "MM/DD/YY" (for
example, 02/23/82). This value must be received as REAL*8.

Note that this routine is good for the period January 1, 1977 through
December 31, 2076.
Usage

INTEGER*2 date(16)
REAL*8 rt_val

rt_val = DATESA (date)
(or)
CALL DATESA(date)
Parameters
date

OUTPUT. Date in the form DAY, MON DD YYYY. The data type does not
matter as long as it is at least 16 characters long.

Loading and Linking Information

'APPLIB - R-Mode
NVAPPLB --— V-Mode (unshared)
VAPPLB - V-Mode

12-3 First Edition

SUBRQUTINES, VOLUME IV

DOFY$A

Purpose

DOFYSA is a double-precision function that returns the day of the year
in the form "DDD" in the dofy argument. The value of the function is
the date in the form YR.DDD, suitable for printing in FORMAT F6.3.
This value can be received as either REAL*4 or REAL*8. This routine is
good for the period January 1, 1977 through December 31, 2076.

Usage

INTEGER*2 dofy (1)
REAL*8 rt_val
o] rt_val may also be declared REAL

rt_val = DOFYS$A(dofy)

(or)
CALL DOFYS$A(dofy)

Parameters
dofy
OUTPUT. Day of year in the form "DDD" ("Julian" date). The data

type does not matter as long as it is at least four characters
long.

Loading and Linking Information

APPLIB - R-Mode

NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

First Edition 12-4

J

YY)

SYSTEM INFORMATION ROUTINES

DTIM$A

Purpose

DTIMSA is a double-precision function that returns disk time since
login as centiseconds is the dsktim argument. The function value will

be disk time since login in seconds. This value may be
either REAL*4 or REAL*8.

Usage
INTEGER*4 dsktim
REAL*8 rt_val
C rt_val may also be declared REAL*4
rt_val = DTIMSA (dsktim)
(or)
CALL DTIMSA (dsktim)
Parameters

dsktim

OUTPUT. Disk time in centiseconds.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

12-5

received as

First Edition

SUBROUTINES, VOLUME IV

EDATS$A

Purgose

EDATS$A is a double-precision function. It returns the date in the
European (military) form ‘DAY, DD MON YEAR’ in the argument edate (for
example, TUE, 23 FEB 1982).

The value of the function is the date in the form DD.MM.YY (for
example, 23.03.82). This value must be received in a REAL*8 variable.

The routine is good for the period January 1, 1977 through December 31,
2076.

Usage

INTEGER*2 edate(16)
REAL*8 rt_val

rt_val = EDATS$A (edate)

(or)
CALL EDATSA (edate)

Parameters
edate

QUTPUT. Date in the form "DAY, DD MON YEAR".
Discussion

The data type of the edate array does not matter as long as it is at
least 16 characters long.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB -— V-Mode

Other Routines Called by EDATSA

DATESA

First Edition 12-6

J

)

9

D)

TIMES$SA

Purpose

SYSTEM INFORMATION ROUTINES

TIMESA is a double-precision function that returns the time of day in
of the function is the time of day in
decimal hours. This value may be received as either REAL*4 or REAL*8.

the form HR:MN:SC. The value

Usage

INTEGER*2 time (8)
REAL*8 rt_val

rt_val = TIMESA (time)
(or)
CALL TIMESA(time)

Parameters

time

OUTPUT. Time of day in the form HH:MM:SS, packed two characters
per halfword. Data type does not matter as long as it is at least

eight characters long.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -—-- V-Mode (unshared)
VAPPLB - V-Mode

12-7

First Edition

M)

R

13
Randomizing Routines

SUMMARY OF RANDOMIZING ROUTINES

This chapter describes the following two Randomizing Routines, found in
the APPLICATION subroutines library.

RANDSA

RNDISA

Generate random number and update "seed," based
upon a 32-bit word size and using the Linear
Congruential Method.

Initialize random number generator "seed."

13-1 First Edition

SUBROUTINES, VOLUME IV

RANDS$A

Purpose

RANDSA is a random-number generator.

Usage

INTEGER*4 seed
REAL*8 rt_val

C rt_val may also be declared REAL*4
rt_val = RANDSA (seed)

(or)
CALL RANDSA(seed)

Parameters
seed

INPUT/OUTPUT. 1Input is previous seed, output is new seed.

Discussion

RANDSA is a double-precision function that updates a seed to a new seed
based upon the following linear congruential method:

U(I)=FLOAT(K(I))/M

K(I) B*K(I-1) modulo M
B 16807.0
M 2**31-1 = 2147483647.0

B and M are from Lewis, Goodman, and Miller, "A Pseudo-random Number
Generator for the System/360," IBM Systems Journal, vol. 8, no. 2,
1969, pp. 136-145.

K(I-1) is the input value of seed and K(I) is the returned value.
The value of the function is U(I) which represents a probability and is

between 0.0 and 1.0. This value may be received as either REAL*4 or
REAL*8.

First Edition 13-2

))

J

DI

N

RANDSA

Loading and

Linking Information

APPLIB -
NVAPPLB --
VAPPLB -

R-Mode
V-Mode (unshared)
V-Mode

13-3

RANDOMIZING ROUTINES

First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

RNDISA

PUI‘EOSG

Initialize random number generator seed.

Usage

INTEGER*4 seed
REAL*8 rt_val
C rt_val may be declared REAL

rt_val = RNDISA (seed)

(or)
CALL RNDISA (seed)

Parameters
seed

OUTPUT. The time of day. The granularity of the returned time of
day value varies from system to system.

Discussion

RNDISA is a double-precision function that is wused to initialize a
random number generator. The function value is the time of day in
seconds. This value may be received as either REAL*4 or REAL*8. If
the function value is exactly 0, 1234567 and 12345.67 will be returned
instead.

Loading and Linking Information

APPLIB —— R-Mode

NVAPPLB -- V-Mode (unshared)
VAPPLB —-- V-Mode

First Edition, Update 2 13-4

J

J

)

A

14
Conversion Routines

SUMMARY OF CONVERSION ROUTINES

This chapter describes the following Conversion Routines, found in the
APPLICATION subroutines library.

CASESA
CNVASA
CNVBSA
ENCDS$A
FDATSA
FEDTSA

FTIMSA

Convert a string from lowercase to upper-
case or uppercase to lowercase.

Convert ASCII number to binary.

Convert binary number to ASCII.

Make a number printable if possible.

Convert the DATMOD field (as returned by RDENS$S)
in format DAY, MON DD YYYY

Convert the DATMOD field (as returned by RDENS$S)
in format DAY, DD MON YYYY.

Convert the TIMMOD field (as returned by RDENSS).

14-1 First Edition

SUBROUTINES, VOLUME IV

CASES$A

Purpose

CASESA is a 1logical function that converts a string from uppercase to
lower, or from lowercase to upper. The function will be .FALSE. if
length is less than 0, otherwise .TRUE..

Usage
INTEGER*2 key, string(l), length
LOGICAL log
log = CASES$A(key, string, length)
(or)
CALL CASESA(key, string, length)
Parameters
key

INPUT. 1Indicates the desired conversion option. Valid keys are:
ASFUPP Convert all alphabetic characters in string from
lowercase to uppercase.

ASFLOW Convert all alphabetic characters in string from
uppercase to lowercase.

string

INPUT/OUTPUT. Array containing character string to be converted,
packed two characters per halfword, any data type.

length

INPUT. Length of string in characters.

First Edition 14-2

))

M)

B

CASESA

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by CASESA

GCHRS$A and MCHRSA

14-3

CONVERSION ROUTINES

First Edition

SUBROUTINES, VOLUME IV

CNVASA

Purpose

CNVASA is a logical function that converts an ASCII digit string into
its binary value for decimal, octal, and hexadecimal numbers. The

numbers may be explicitly signed. Leading and trailing blanks are
ignored, as well as blanks between the sign and the number. However,
blanks within the number are not allowed. If the number converts

successfully, the function is .TRUE. and value is the converted binary
value. If conversion, is not successful, the function is .FALSE. and
value is 0. Note that for decimal conversions overflow will be
considered as unsuccessful, whereas for octal and hexadecimal
conversions overflow is ignored.

(.TRUE. and .FALSE. are FORTRAN logical values.)

Usage
INTEGER*2 numkey, name(l), namlen
INTEGER*4 value
LOGICAL log
log = CNVASA (numkey, name, namlen, value)

(or)
CALL CNVASA(numkey, name, namlen, value)

Parameters
numkey

INPUT. Specifies data type of number to be converted. Possible
values are:

ASDEC Decimal
ASBIN Binary
ASOCT Octal
ASHEX Hexadecimal
name
INPUT. Array containing ASCII digit string, packed two characters
per halfword. Maximum lengths for the input string’s original data

type are: binary, 31; octal, 11; decimal, 10; hexadecimal, 8.
Maximum does not include leading signs or blanks.

First Edition 14-4

))

)

R

CNVASA

namlen
INPUT. Length of name in characters.
value

OUTPUT. Returned converted binary value.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by CNVASA

GCHRSA and NLENSA

14-5

CONVERSION ROUTINES

First Edition

SUBROUTINES, VOLUME IV

CNVB$A

Purgose

CNVBSA is an INTEGER*2 function used to convert a binary number to an
ASCII digit string.

Usage

INTEGER*2
INTEGER*4
INTEGER*2

rt_val =

numkey, name(l), namlen
value
rt_val

CNVB$A (numkey, value, name, namlen)
(or)

CALL CNVBSA(numkey, value, name, namlen)

Parameters

numkey

INPUT. Number base to which value is converted. Valid keys are:

ASBIN
ASBINZ
ASDEC
ASDECU
ASDECZ
ASOCT
ASOCTZ
ASHEX
ASHEXZ

value

Binary number with leading blanks

Binary number with leading 0s

Signed decimal number with leading blanks
Unsigned decimal number with leading blanks
Signed decimal number with leading 0s

Octal number, leading blanks

Octal number, leading Os

Hexadecimal, leading blanks

Hexadecimal, leading 0s

INPUT. Binary number to be converted.

First Edition

14-6

J)

M)

b

CNVBSA CONVERSION ROUTINES

name

OUTPUT. Array containing returned ASCII digit string packed two
characters per halfword. Data type does not matter.

namlen
INPUT. Length of name in characters. Maximum length for binary is

31, octal is 11, decimal is 10, and hexadecimal is 8. Maximum does
not include leading signs or Os.

Discussion

CNVBSA converts a binary number into an ASCII digit string for decimal,
octal, and hexadecimal numbers. The returned digit string is
right-justified in name and preceded by leading blanks or 0s depending
upon numkey specification.

If value is negative and the number is to be treated as signed decimal,
the digit will begin with an initial minus sign. If value is negative,
binary, octal, and hexadecimal numbers will be in two’s-complement
form. If the number converts successfully, the function value is the
number of digits and if not, it is 0.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB —_ V-Mode

Qther Routines Called by CNVBS$A

FILLSA and MCHRSA

14-7 First Edition

SUBROUTINES, VOLUME IV

ENCDS$A

Purpose

ENCD$A is a logical function that converts a numeric value to a FORTRAN
format.

Usage
INTEGER*2 array(l), width, dec
REAL*8 value
LOGICAL log
log = ENCD$A(array, width, dec, value)
(or)
CALL ENCD$A(array, width, dec, value)
Parameters

array

OUTPUT. Array to receive value, packed two characters per
halfword. Data type does not matter.

width

INPUT. Field width as in format Fw.d (should be even).
dec

INPUT. Places to right of decimal point as shown in format Fw.d.
value

INPUT. Double-precision value to be encoded (REAL*8).

Discussion

ENCD$A attempts to encode value in the supplied Fw.d format if it will
fit. If not, the dec argument is decremented (moving the decimal point
to the right) until it will fit. If dec reaches 0, or is originally
supplied as 0, value will be encoded in Iw format if the number will
fit into a 32-bit integer. If not, and if the field is wide enough
(width > 7), the value will be encoded in E format. If the field is
not wide enough, it will be filled with asterisks.

First Edition 14-8

))

J

r

r

)

ENCDS$A

The formats are:

Examples are:

Fw.d: 123.4

I: 12345

CONVERSION ROUTINES

A number that includes a decimal fraction. The d is
the number of digits after the decimal point, and w
is the total number of positions (including the
decimal point) in the field. The maximum is 32767.

An integer, with w digits. Maximum is 32767.
A floating point number in scientific format

(xxE+yy), where xx represents the characteristic and
Yy is the mantissa or exponent.

E: 1.23456E+99

Note that the

largest value of width is 16. If it is larger than 16,

only the first 16 characters of array are used.

The function returns .TRUE. if the encoding was successful, and

.FALSE. if the

field was filled with asterisks. Note that array is

the only argument that is actually modified in the calling program.

Loading and Linking Information

APPLIB -— R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB —_ V-Mode

14-9 First Edition

SUBROUTINES, VOLUME IV

FDATS$A

Purpose

FDATSA is a REAL*8 function that converts the datmod field, returned as
halfword 20 of buffer by RDENS, to the format DAY, MON DD YYYY (for
example, TUE, FEB 23 1982).

The function wvalue 1is the datmod field converted to MM/DD/YY (for
example, 02/23/82). It must be received in a REAL*8 variable. The
routine is good for the period January 1, 1972 to December 31, 2071.

RDEN$$ must be called before this subroutine. Since RDENSS is
considered obsolete, this subroutine has limited use.

Usage

INTEGER*2 datmod, date(16)
REAL*8 rt_val

rt_val = FDATS$A (datmod, date)
(or)
CALL FDATS$A(datmod, date)

Parameters
datmod

INPUT. Date returned by RDENS$$. This is the date the file was
last modified and is in the format YYYYYYYMMMMDDDDD. YYYYYYY is
the year modulo 100, MMMM is the month, and DDDDD is the day.

date

OUTPUT. Array containing the date as a character string, packed
two characters per halfword. Date is in the DAY, MON DD YEAR
format. Data type does not matter as long as the array is at least
16 characters long.

First Edition 14-10

J)

J

M)

)

FDATSA

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -—-— V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by FDATSA

CNVBSA

14-11

CONVERSION ROUTINES

First Edition

SUBROUTINES, VOLUME IV

FEDTSA

Purpose

FEDTSA converts the datmod field, returned as halfword 20 of buffer by
RDENS$S, to the DAY, DD MON YEAR format in date (for example, TUE, 23
FEB 1982). The function value is datmod converted to a DD.MM.YY format
(for example, 23.02.82). It must be received in a REAL*8 variable.
The routine includes the period January 1, 1972 through December 31,
2071.

RDENSS must be called before this subroutine. Since RDENS$S is
considered obsolete, this subroutine has limited use.

Usage

INTEGER*2 datmod, date(16)
REAL*8 rt_val

rt_val = FEDTS$A(datmod, date)
(or)
CALL FEDTS$A(datmod, date)

Parameters
datmod

INPUT. Date returned by RDENSS. This is the date that the file
was last modified and is in the format YYYYYYYMMMMDDDDD. YYYYYYY
is the year modulo 100, MMMM is the month, and DDDDD is the day.

date

OUTPUT. Array containing the date as a character string, packed
two characters per halfword. Date is in the ‘DAY, DD MON YEAR
format. Data type does not matter as long as the array is at least
16 characters long.

First Edition 14-12

)

J)

-~

~—

R

AR

FEDTSA

Loading and Linking Information

APPLIB - R-Mode
NVAPPIB -—- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by FEDTSA

FDATSA

14-13

CONVERSION ROUTINES

First Edition

SUBROUTINES, VOLUME IV

FTIMSA

Purpose

FTIMSA is a REAL*4 or REAL*8 function that converts the timmod field,
returned as halfword 21 of buffer by RDENS$S, to the HH:MM:SS format.
The function value 1is the timmod field converted to decimal hours and
may be received as either REAL*4 or REAL*8.

Usage
INTEGER*2 timmod, time (8)
REAL*8 rt_val

C rt_val may also be declared REAL
rt_val = FTIMSA (timmod, time)

(or)
CALL FTIMSA (timmod, time)

Parameters
t immod

INPUT. Time at which a file was last modified, formatted as
’seconds since midnight’ divided by four.

time
QUTPUT. Array containing the time a file was last modified as a

character string in the format /HH:MM:SS’. Data type does not
matter as long as array is at least eight characters long.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB —— V-Mode

Other Routines Called by FTIMSA

CNVBSA

First Edition 14-14

J)

PR

D)

M)

15
File System Routines

SUMMARY OF FILE SYSTEM ROUTINES

This chapter describes the following File System Routines, found in the
APPLICATION subroutines library.

CLOSSA
DELESA
EXSTS$A
GENDSA
OPENSA
OPNPSA
OPNVS$A
OPVPS$A
POSNSA
RPOSSA
RWNDSA
TEMPSA
TRNCSA
TSCNSA
UNITS$A

Close a file.

Delete a file.

Check for file existence.

Position to end-of-file.

Open supplied name.

Read name and open.

Open supplied name with verification and delay.
Read name and open with verification and delay.
Position file.

Return position of file.

Rewind file.

Open a scratch file with unique name.

Truncate file.

Scan the file system structure.

Check for file open.

15-1 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

CLOS$A

Purpose

CLOSS$A is a logical function that closes the file open
the function is

the operation is successful,

function is

Usage

.FALSE..

INTEGER*2 funit
LOGICAL*2 log

log =

CALL

Parameters

funit

INPUT.

Loading and

CLOSS$A (funit)
(or)
CLOSS$A (funit)

File unit to be closed.

Linking Information

APPLIB -
NVAPPLB --
VAPPLB -

R-Mode
V-Mode (unshared)
V-Mode

First Edition, Update 2

15-2

otherwise,

J

J

J J

DRI

3 9

FILE SYSTEM ROUTINES

DELE$A

Purpose
DELESA is a logical function that deletes the file named in name. If
the operation is successful, the function is .TRUE.; otherwise the

function is .FALSE..

Usage

INTEGER*2 name(l), namlen
LOGICAL*2 1log

log = DELES$A(name, namlen)
(or)
CALL DELES$A(name, namlen)

Parameters

name

INPUT. Filename (may be a pathname) packed two characters per
halfword. Data type does not matter.

namlen

INPUT. Length of name in characters.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -—- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines called by DELESA

TREES$A, UNITSA, NLENSA

15-3 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

EXSTSA

Purgose

EXSTSA is a logical function that returns .TRUE. if the file exists
and .FALSE. if the file does not exist or if an error was encountered.

Usage

INTEGER*2 name(l), namlen
LOGICAL*2 log

log = EXSTS$A (name, namlen)

CALL EXSTS$A(name, namlen)

Parameters
name

INPUT. Filename (may be a pathname) packed two
halfword. Data type does not matter.

namlen

INPUT. Length of name in characters.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by EXSTSA

TREES$SA, UNIT$A, NLENS$A.

First Edition, Update 2 15-4

characters

pe

J

J J

9

D

Y Y

FILE SYSTEM ROUTINES

GENDS$A

Purpose

GENDS$A is a logical function that positions the file open on funit to
end-of-file. If the operation is successful, the function is .TRUE.,
otherwise, the function is .FALSE..

Usage

INTEGER*2 funit
LOGICAL*2 log

LOG = GENDSA (funit)
(or)
CALL GENDSA (funit)
Parameters
funit

INPUT. PRIMOS file unit whose file is acted upon.

Loading and Linking Information

APPLIB —— R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

15-5 First Edition, Update 2

SUBROUTINES REFERENCE 1IV: LIBRARIES AND IO

OPENS$A

Purpose

OPENSA is a logical function that opens a file of the given name on
funit. If the operation is successful, the function value is .TRUE.,
and if the operation is unsuccessful, the function value is .FALSE..

Usage
INTEGER*2 opnkey, typkey, untkey
INTEGER*2 name(l), namlen, funit
LOGICAL*2 log
log = OPENSA (opnkey+typkey+untkey, name, namlen, funit)

(or)
CALL OPENSA (opnkey+typkeyt+untkey, name, namlen, funit)

Parameters
opnkey
INPUT. Indicates the desired operation. Valid Keys are:
ASREAD Open for reading.
ASWRIT Open for writing.
ASRDWR Open for reading and writing.
typkey
INPUT. Indicates the desired file type. Valid Keys are:
AS$SAMF SAM file
ASDAMF DAM file
ASCAMF caM file
untkey
INPUT. Indicates how funit is to be handled. Key is:
ASGETU Choose a PRIMOS file unit number to be returned in

funit. Omission of this key requires user input of a
legal file unit number in funit.

First Edition, Update 2 15-6

J

J

J

Y)

OPENSA FILE SYSTEM ROUTINES

name

INPUT. File name (or pathname) packed two characters per halfword.
Data type does not matter.

namlen
INPUT. Length of name in characters.
funit

INPUT/OUTPUT. PRIMOS file unit returned. While always an output,
funit must also input a legal file unit number if ASGETU is not

AR

specified in untkey.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by OPENS$A

TREESA, UNITS$A, and NLENSA.

15-7

First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

OPNP$A

Purpose

OPNP$SA is a logical function that gets a name from the user and opens
it on funit. If the operation is successful, the function value is
.TRUE. and if the operation is unsuccessful or no name 1is supplied,
the function value is .FALSE..

Usage
INTEGER*2 msg(l), msglen, opnkey, typkey, untkey
INTEGER*2 name(l), namlen, funit
LOGICAL*2 log

log = OPNP$A(msg, msglen, opnkey+typkey+tuntkey, name, namlen,

X funit)
(or)
CALL OPNP$A(msg, msglen, opnkey+typkey+untkey, name, namlen,
b4 funit)
Parameters

msg

OUTPUT. Array containing prompt for name message, packed two
characters per halfword. Data type does not matter.

msglen
INPUT. Length of msg in characters.
opnkey
INPUT. Indicates the desired operation. Key values may be:
ASREAD Open for reading.
ASWRIT Open for writing.

ASRDWR Open for reading and writing.

First Edition, Update 2 15-8

J

J

) J

S D

AR

OPNP3$A FILE SYSTEM ROUTINES

typkey
INPUT. Indicates the type of file. Key values may be:
ASSAMF SAM file
ASDAMF DAM file
untkey
INPUT. Indicates how funit is to be used. Key is:
ASGETU Choose a PRIMOS file unit number to be returned in
funit. Omission of this key requires that the caller
input a unit number in funit.

name

OUTPUT/INPUT. Filename (or pathname) packed two characters per
halfword. Data type does not matter.

namlen
INPUT. Length of name in characters.
funit
INPUT/OUTPUT. PRIMOS file unit returned. While always an output,

funit must also input a legal file unit number if AS$GETU is not
specified in untkey.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -—- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by OPNPSA

RNAMSA, NLENSA, TREES$A, and UNITSA.

15-9 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

OPNVS$A

Purpose

OPNVS$A is a logical function that opens a file of the given name on
funit. Note that the functions of verification and delay as described
here are different from those in the File System Subroutines in Volume
IT.

Usage
INTEGER*2 opnkey, typkey, untkey
INTEGER*2 name(l), namlen, funit
INTEGER*2 verkey, wtime, retry
LOGICAL*2 log

log = OPNVS$A (opnkey+typkey+untkey, name, namlen, funit,

X verkey, wtime, retry)
(or)
CALL OPNVS$A (opnkey+typkey+untkey, name, namlen, funit,
X verkey, wtime, retry)
Parameters
opnkey

INPUT. Indicates the desired operation. Valid keys are:
ASREAD Open for reading.
ASWRIT Open for writing.
ASRDWR Open for reading and writing.
typkey
INPUT. 1Indicates the type of file. Valid keys are:
ASSAMF SAM file
ASDAMFE DAM file
untkey
INPUT. Indicates how to handle funit. Key is:
ASGETU Choose a PRIMOS file unit number to be returned in

funit. Omission of this key requires that the caller
input a valid unit number in funit.

First Edition, Update 2 15-10

J J

J

DI

AR

OPNVS$A FILE SYSTEM ROUTINES

name

INPUT. Filename (may be a pathname) packed two characters per
halfword. Data type does not matter.

namlen

INPUT. Length of name in characters. If namlen is 0 or less, the
function value is .FALSE..

funit
INPUT/OQUTPUT. PRIMOS file unit returned. While always an output,
funit must also input a legal file unit number if A$GETU is not
specified in untkey.

verkey

INPUT. Indicates type of verification procedure to follow during
execution of this routine. Valid keys are:

ASNVER No verification.
ASVNEW Verify new or ask if OK to modify old file.

ASOVAP Same as ASVNEW except user is prompted to "OVERWRITE"
or "APPEND" if file already exists.

ASVOLD Verify old; return .FALSE. if not old file.
wtime
INPUT. Number of seconds to wait if FILE IN USE.
retry

INPUT. Number of times to retry if FILE IN USE.

Discussion

If wtime and retry are specified as nonzero, and the file to be opened
is IN USE, the open 1is retried the specified number of times, with
wtime seconds (elapsed time) between each attempt. If the number of
retries expires, or 1f either wtime or retry is initially 0 and the
file is IN USE, the function returns .FALSE..

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB —- V-Mode (unshared)
VAPPLB - V-Mode

15-11 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

Other Routines Called by OPNVSA

RNAM$SA, TIMES$A, NLEN$A, EXSTS$A, UNITSA, TREESA, and GENDSA.

Verification

If verification is not requested (verkey = ASNVER), OPNVS$A is identical
in function to OPEN$A. If verification is requested (verkey other than
ASNVER), the following actions will be taken according to the value of
verkey:

ASVNEW If the file already exists and opnkey is either
ASWRIT or ASRDWR, the user is asked if it is OK to
modify the old file. 1If the answer is "NO", the
function returns .FALSE.. If the answer is "YES™",
the file is opened.

ASQVAP This is the same as ASVNEW except that if an old
file is to be modified, the user is also asked if
the file should be overwritten or appended. If the
answer is "APPEND", the file is positioned to end of
file.

ASVOLD This is the default case if opnkey = ASREAD. If any
other key is specified, and if the named file does
not already exist, a new file is not created and the
function returns .FALSE..

Errors
If any errors not covered above occur while opening the file or

positioning it (ASOVAP), the function returns .FALSE.. If the open is
ultimately successful, the function returns .TRUE..

First Edition, Update 2 15-12

4 DI

J)

5 9

AR

FILE SYSTEM ROUTINES

OPVP$A

Purpose

OPVPSA is a logical function that gets a filename from the wuser and
opens it on funit. Note that the functions of verification and delay
as described below perform differently from the File System Subroutines
in Volume II.

Usage

INTEGER*2 msg(l), msglen, opnkey, typkey, untkey
INTEGER*2 name(l), namlen, funit

INTEGER*2 verkey, wtime, retry

LOGICAL*2 log

log = OPVP$A (msg, msglen, opnkey+typkey+untkey, name(l),

X namlen, funit, verkey, wtime, retry)
(or)
CALL OPVPS$A(msg, msglen, opnkey+typkey+untkey, name(l),
X namlen, funit, verkey, wtime, retry)
Parameters

nsg

INPUT. Array containing prompt message, packed two characters per
halfword. Data type does not matter.

msglen
INPUT. Length of msg in characters.
opnkey
INPUT. Indicates desired operation. Valid keys are:
ASREAD Open for reading.
ASWRIT Open for writing.
ASRDWR Open for reading and writing.
typkey
Indicates type of file being accessed. Valid keys are:
AS$SAMF SAM file

ASDAMF DAM file

15-13 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

untkey
INPUT. Indicates how to handle funit. Key is:
ASGETU Choose a file unit number to be returned in funit.
Omission of this key requires the routine to input a

valid file unit number in funit.

name

OUTPUT. Array containing filename (may be pathname), packed two
characters per halfword. Data type does not matter.

namlen

INPUT. Length of name in characters. If namlen is 0 or less, the
function value is .FALSE..

funit
INPUT/OUTPUT. Primos file unit returned. While always an output,
funit must also input a legal file unit number if ASGETU is not
specified in untkey.

verkey

INPUT. Indicates the verification option desired. Valid keys are:

ASNVER No verification.
ASVNEW Verify new file or ask if OK to modify old file.

ASQVAP Same as ASVNEW except user is prompted to "OVERWRITE"
or "APPEND" if file already exists.

ASVOLD Verify old. Function value is .FALSE. if not old.

wtime
INPUT. Number of seconds to wait if FILE IN USE.
retry

INPUT. Number of times to retry if FILE IN USE.

First Edition, Update 2 15-14

J

J

) J

D)

N

OPVPS$A FILE SYSTEM ROUTINES

Discussion

If wtime and retry are specified as nonzero, and the file to be
opened is 1IN USE, the open will be retried the specified number of
times, with wtime seconds (elapsed time) between attempts. If the
number or retries expires, or if either wtime or retry is initially
0 and the file is in use, the function returns .FALSE..

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB —- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by OPVPS$A

RNAMSA, TIMESA, NLENSA, EXSTSA, UNIT$SA, TREESA, and GENDSA.

Verification

If verification 1s requested, the following are the possible
actions, according to the value of verkey:

ASVNEW If the file already exists and opnkey is ASWRIT
. or ASRDR, the user will be asked if it is OK to
modify the old file. If the answer is "NO", the

function returns .FALSE.. If "YES", the file is
opened.
ASQOVAP If an old file is to be modified (as answered

"YES" for ASVNEW), the user is also asked if the
file should be overwritten or appended. If the
answer is "APPEND", the file will be positioned
to end of file.

ASVOLD Default case if opnkey = ASREAD. If any other
key is specified, and if the named file does not
already exist, a new file will not be created
and the prompt message will be repeated.

15-15 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

J

Errors ﬂ

If any errors not covered above occur while opening the file or
positioning it (A$OVAP), or a name is not supplied when requested, the

function returns .FALSE.. If the open is ultimately successful, the
function returns .TRUE..

First Edition, Update 2 15-16

J)

DI

N

FILE SYSTEM ROUTINES

POSNS$A

Purpose

POSNSA is a logical function that positions the file open on funit to
the specified position. If the operation is successful, the function
is .TRUE., and if unsuccessful, the function is .FALSE..

Usage
INTEGER*2 poskey, funit
INTEGER*4 pos
LOGICAL*2 log
log = POSNS$A(poskey, funit, pos)

(ox)
CALL POSNSA(poskey, funit, pos)

Parameters
poskey
INPUT. Indicates the desired position. Valid keys are:
ASABS Absolute position
ASREL Relative position
funit
INPUT. PRIMOS file unit to which the file is assigned.
pos

INPUT. The position (relative or absolute).

Loading and Linking Information

APPLIB —— R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

15-17 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

RPOSS$A

Purpose

RPOSS$A is a logical function that returns the current absolute position
of the file open on funit. If the operation is successful, the
function is .TRUE.; otherwise the function is .FALSE..

Usage

INTEGER*2 funit
INTEGER*4 pos
LOGICAL*2 log

log = RPOSS$SA(funit, pos)

(or)
CALL RPOSS$A(funit, pos)

Parameters
funit

INPUT. PRIMOS file unit opened on the file being queried.
pos

OUTPUT. Returned absolute position.

Loading and Linking Information

APPLIB - R-Mode

NVAPPLB -- V-Mode (unshared)
VAPPLB - V-Mode

First Edition, Update 2 15-18

J D

J)

D)

Y

FILE SYSTEM ROUTINES

RWNDS$A

Purpose

RWNDSA is a logical function that rewinds the file open on funit. If
the operation is successful, the function is .TRUE. Otherwise the
function is .FALSE..

Usage

INTEGER*2 funit
LOGICAL*2 1log

log = RWNDS$A (funit)

(or)
CALL RWNDSA (funit)

Parameters
funit

INPUT. PRIMOS file unit holding file to be rewound.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -- V-Mode (unshared)
VAPPLB —— V-Mode

15-19 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

TEMPS$A

Purpose

This routine opens a unique temporary file in the current directory for
reading and writing. This file will be named T$xxxx where xxxx 1is a
four-digit decimal number between 0000 and 9999 inclusive. The actual
name opened will be returned in the name buffer. If the operation is

successful, the function value is .TRUE. and 1if the operation is
unsuccessful, the function value is .FALSE..

Usage

INTEGER*2 typkey, untkey, name(6), namlen, funit
LOGICAL*2 log

log = TEMPSA (typkey+untkey, name, namlen, funit)

(or)
CALL TEMPSA (typkey+tuntkey, name, namlen, funit)

Parameters

typkey

INPUT. 1Indicates the file type to be 1loaded into the unique
temporary file. Valid keys are:

ASSAMF SAM file
ASDAMF DAM file
untkey
INPUT. Indictes how to handle funit. Key is:
ASGETU Choose a file unit number to be returned in funit. If
ASGETU is omitted, the caller must input a valid file
unit number in funit.

name

QUTPUT. Returned name (six characters, packed two characters per
halfword). Data type does not matter.

namlen

INPUT. Length of name buffer in characters (must be at least six).

First Edition, Update 2 15-20

J

J J

D)

A

TEMPSA

funit

INPUT/OUTPUT. Indicates the

from untkey.

Loading and Linking Information

APPLIB - R-Mode
NVAPPLB -—- V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by TEMPSA

FILLSA

file
output, it is only required for input if (A$GETU) has been

15-21

FILE SYSTEM ROUTINES

While always given for
omitted

First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

TRNCS$A

Purpose
TRNCSA is a logical function that truncates the file open on funit. If

the operation is successful, the function is .TRUE.; otherwise the
function is .FALSE.

Usage

INTEGER*2 funit
LOGICAL*2 log

log = TRNCSA (funit)

(or)
CALL TRNCS$A(funit)

Parameters
funit

INPUT. PRIMOS file unit holding the file to be truncated.

Loading and Linking Information

APPLIB - R-Mode

NVAPPLB -—- V-Mode (unshared)
VAPPLB —— V-Mode

First Edition, Update 2 15-22

J)

) J

N

N

FILE SYSTEM ROUTINES
TSCNS$A

Purpose

TSCN$SA is a logical function that scans the file system tree structure
(starting with the home directory). It uses the file subroutines
RDENS and SGDRS to read directory and segment directory entries into
the entry array.

Usage
INTEGER*2 key, funits(l), entry(l,1)
INTEGER*2 maxsiz, entsiz, maxlev, lev, code
LOGICAL*2 1log
log = TSCNSA((key, funits, entry, maxsiz, entsiz, maxlev,
b d lev, code)
(orx)
CALL TSCN$A(key, funits, entry, maxsiz, entsiz, maxlev,
X lev, code)
Parameters
key

INPUT. Indicates the desired scan. Valid keys are:
ASTREE Scan full tree.
ASNUFD Do not scan subdirectories.
ASNSEG Do not scan segment directories.
ASCUFD Scan current directory only.
ASDLAY Pause when popping up to directory.
funits

INPUT. Array of unit numbers maxlev long.

15-23 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

entry

OUTPUT. Array maxsiz * maxlev long.

Caution

The above two-dimensional array may be passed from a FORTRAN
program only.

maxsiz

INPUT. Size of each entry in entry array.
entsiz

INPUT. Set to size of current entry.
maxlev

INPUT. Maximum number of levels to scan.
lev

OUTPUT. Current level.
code

QUTPUT. Standard return code of 0 for success or one of the
standard error codes.

Discussion

Each call to TSCNSA returns the next file on the current level or the
first file on the next lower level of the structure. The variable lev
is used to keep track of the current level. For example, after the
first call to TSCN$A (with lev=0), lev will be returned as 1, and
entry(1l,1) will contain the directory entry describing the first file
in the home directory. If this file is a subdirectory, following the
next call to TSCN$SA lev will be 2, and entry(1,2) will contain the
entry for the first file in the subdirectory. Thus, for the directory
represented in Figure 15-1, TSCN$A in a loop would return the names in
the order shown in Figure 15-2.

The values of key have the following meanings:

ASTREE All entries in the directory structure are returned
up to maxlev levels deep. (Levels below level
maxlev are ignored.)

First Edition, Update 2 15-24

))

J J

3 Y

AR

TSCNSA FILE SYSTEM ROUTINES
ASNUFD When a subdirectory 1is encountered (in the home
directory), its entry is returned, but no files
under that subdirectory are returned. In the
absence of segment directories, this effectively
limits the scan to the home directory.
ASNSEG Files inside segment directories are not returned.
ASCUFD This is a logical combination of ASNUFD and ASNSEG
-— only files in the home directory are returned.
ASDLAY This key is identical to ASTREE except that
directory entries are returned twice, once on the
way down (as for ASTREE), and again on the way up.
(This is necessary, for example, to implement a
tree-delete function since a directory cannot be
deleted until it has been emptied.)
SUBROUTINES
SOURCE GATE REFRIED NONPOISONOUS
BLUE GREEN OBSOLETE

A Directory to be Searched by TSCNS$A

Figure 15-1

SOURCE

SOURCE > BLUE
SOURCE > GREEN
GATE

GATE > OBSOLETE
NONPOISONOUS
REFRIED

OK,

Result of TSCNS$A Sample Program on Figure 15-1

Figure 15-2

15-25 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

The following items should be considered when using TSCNS$A:

1. For the first call of TSCN$A, lev should be equal to 0.
Thereafter it should not be modified until EOF is reached on
the top level directory at which point lev will be reset to 0.

2. The entries in the entry array are in RDEN$S format. For
entries inside a segment directory, all information from the
directory entry is first copied down a level. Entry(2,lev) is
set to 0 and entry(3,lev) is then set to a 16-bit entry number.
For nested segment directories, the type field of the entry is
set appropriately by opening the file with SRCHS$S. (The file
is then immediately closed again.)

3. The parameter entsiz is set to the number of halfwords returned
by RDEN$S. 1Inside segment directories, it should be ignored.

4. The type fields in the entry array -- entry(20,1) -- should not
be modified. (TSCNS$A uses them to walk up and down the tree.)

5. When TSCNSA requires a file unit, it uses units(lev). By using
the RDENS and SGDR$$ read-position and set-position functions
carefully, it is possible to reuse file units dynamically.

6. TSCNSA returns .TRUE. until a non-file system code is returned
or until ESEOF is returned with lev=0 (top level). ESEOF on
lower levels of the structure is suppressed, and code is
returned as 0.

7. TSCNSA requires owner rights in the home directory.

Loading and Linking Information
APPLIB -— R-Mode

NVAPPLB -- V-Mode (unshared)
VAPPLB —= V-Mode

First Edition, Update 2 15-26

J J

J)

EERN

YD

TSCNSA FILE SYSTEM ROUTINES

Example

The following FORTRAN program illustrates how TSCNSA can be used to
perform a directory LISTF. The previous figures, 15-1 and 15-2, show
the results of the program run in a sample directory.

$INSERT SYSCOM>ERRD.INS.FTN
$INSERT SYSCOM>KEYS.INS.FTN
SINSERT SYSCOM>ASKEYS.INS.FTN

c
INTEGER MAXLEV,MAXSIZ
PARAMETER (MAXLEV=16) /* MAXIMUM LEVELS TO SCAN
PARAMETER (MAXSIZ=24) /* MAXIMUM SIZE OF EACH SLICE IN ENTRY
INTEGER I,L,ENTRY (MAXSIZ,MAXLEV),UNITS (MAXLEV),CODE,NLEVSA
LOGICAL TSCNSA
DATA UNITS/Y,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16/

C

10 L=0 /* INITIALIZE LEVEL COUNTER

100 IF (TSCNSA (ASTREE, UNITS, ENTRY, MAXSIZ, I, MAXLEV,L,CODE)) GOTO 105
IF (CODE.NE.ESEOF) CALL ERRPR$ (ESNRTN, CODE, 0, 0, 0, 0)

CALL EXIT /* ALL DONE IF ESEOF
GOTO 10 /* RESTART IF ’S’ TYPED
c
105 DO 200 I=1,L /* CONSTRUCT PATHNAME
IF (ENTRY(2,I).EQ.0) GOTO 150/* BRANCH IF SEGDIR
CALL TNOUA (ENTRY(2,I), NLENSA(ENTRY(2,I), 32))
GOTO 170
c
150 CALL TNOUA(’ (', 1) /* FORMAT SEGDIR ENTRY NUMBER
CALL TODEC(ENTRY(3,1I))
CALL TNOUA(’)’, 1)
C
170 IF (I.NE.L) CALL TNOUA(’ > ’, 3)/* PATHNAME SEPARATOR
200 CONTINUE
CALL TONL
GOTO 100
END

15-27 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

UNITS$SA

PU.IEOSG

UNITS$A is a logical function that returns .TRUE. if a file unit
open and .FALSE. if it is not open.

Usage

INTEGER*2 funit
LOGICAL*2 log

log = UNITS$A (funit)

(or)
CALL UNITSA (funit)

Parameters
funit

INPUT. PRIMOS file unit whose open status is being queried.

Loading and Linking Information

APPLIB - R-Mode

NVAPPILB -- V-Mode (unshared)
VAPPLB - V-Mode

First Edition, Update 2 15-28

is

J

J

J J

)

3

16
Parsing Routine

PARSING ROUTINE

This chapter describes the command line Parsing Routine CMDL$A, found
in the APPLICATION subroutines library. The subroutine description
includes a thorough discussion of strategies for using this subroutine.
Examples are included.

16-1 First Edition

SUBROUTINES, VOLUME IV

CMDLS$A

Note

For Pascal and PL/I programmers, CMDL$A is obsolete and has
been replaced with CLSPIX.

Purpose

CMDLSA is a logical function for parsing a PRIMOS command line. CMDLSA
is designed to facilitate the design and implementation of user
interfaces in a program. It provides a means to break a character
string into tokens (words or expressions) and return information
regarding each token.

Usage

INTEGER*2 key, kwlist(l), kwindx, optbuf (1)
INTEGER*2 buflen, option, kwinfo (10)
INTEGER*4 value

LOGICAL log

log = CMDLS$A (key, kwlist, kwindx, optbuf, buflen, option,

X value, kwinfo)
(or)
CALL CMDLSA(key, kwlist, kwindx, optbuf, buflen, option,
b4 value, kwinfo)
Parameters

key
INPUT. Indicates the desired subroutine function. Valid keys are:
ASREAD Return the next keyword entry in the command line.
ASNEXT Call COMANL to get the next command line, turn on
default processing, and return the first keyword entry
in the new command line.
ASRSET Reset the command line pointer to the beginning of the

cormmand line and turn on default processing. Use of
this key does not return a keyword entry.

First Edition 16-2

))

J)

A

h

CMDLSA PARSING ROUTINE

ASRAWI Return the remainder of the command line as raw text
and turn on the end-of-line indicator. Text starts at
the token following the option (if present) of the
last keyword entry read.

ASNKWL Turn on default processing and return the next keyword
entry in the command line. This key allows the
calling program to switch keyword lists in the middle
of a command line.

ASRCMD Permits the use of a keyword without a preceding minus
sign as the first token on a line (may only be wused
for lines subsequent to the initial command line).

kwlist
INPUT. A one-dimensional integer array containing control
information, a table of keyword entry descriptions, and a 1list of
default keywords. See Kwlist Format later in this chapter for a

complete description.
kwindx

OUTPUT. A keyword index returned as an INTEGER*2 variable
identifying the keyword in an entry. Possible values are:

<0 Unrecognized keyword or CMDLSA was called with a key
of ASRSET or ASRAWI.
0 End of line.
>0 Valid keyword.

optbuf
INPUT. Packed array that normally contains the text of a keyword
option. However, if an unrecognized keyword is encountered, optbuf

contains the text of that keyword. The data type does not matter.

buflen

INPUT. Specified length of optbuf in characters. It must be 0 or
greater.

16-3 First Edition

SUBROUTINES, VOLUME IV CMDLS$A

option

OUTPUT. Returned INTEGER*2 variable that describes the option
following a keyword. Possible values are:

ASNONE No option, or option was null, optbuf will be blank.

ASNAME option was a name.

ASNUMB option was a number, result of numeric conversion
returned in value.

ASNOVF option was a number and conversion resulted in
overflow (decimal numbers only)

value

OUTPUT. Returned INTEGER*4 variable equal to the binary value of
an option if it was a number. Otherwise, it is 0.

kwinfo

OUTPUT. A ten-halfword integer array that returns miscellaneous
information and must be dimensioned in the calling program.
kwinfo(1l) is equal to the number of characters in optbuf and
kwinfo(2) through kwinfo(10) are reserved for future use.

Discussion

CMDLS$SA was designed to simplify the processing of a PRIMOS command line
while, at the same time, providing the user with a great deal of
flexibility in defining the command environment.

This routine will parse a command line, one keyword entry at a time,
and return information about each entry it encounters. A keyword entry
is defined as a -~keyword followed by an option. A default keyword
entry is defined as an option that is not preceded by a -keyword but,
by virtue of its position in the command line, implies a specified
-keyword (e.g., FTN SNARF, where SNARF implies the default keyword
—-INPUT) . Defaults may only occur at the beginning of a command line.

CMDLS$A returns the following information for each keyword entry in the
command line:

e Integer that identifies the -keyword (kwindx)

e Text of the keyword option, if present (optbuf)

e Option type (option)

First Edition 16-4

.

)

3

CMDLS$A PARSING ROUTINE

® Results of numeric conversion, if option was a number (value)

e Number of characters in the text of an option (kwinfo(l))

Note

CMDL3A does not perform any action other than returning
information about the command line.

Loading and Linking Information

APPLIB -— R-Mode
NVAPPLB -—-— V-Mode (unshared)
VAPPLB - V-Mode

Other Routines Called by CMDLSA

CNVASA, CNVBSA, CSUBSA, FILLSA, JSTR$A, MSUBSA, MSTRS$A, NLENSA and
SSUBSA.

Defining a Command Environment

The following is a 1list of considerations that should be taken into
account when defining a command environment:

1. A keyword may have, at most, one option following it.

2. A keyword must begin with a dash (-).

3. A keyword may not be a decimal number (e.g., -99).

4. Register-setting parameters (described with the R-mode EXECUTE

command in the LOAD and SEG Reference Guide) are not
recognized.

5. Default keywords are only allowed at the beginning of a command
line. The first -keyword encountered turns off default
processing and all remaining options on the command line must
be preceded by a -keyword. (This restriction can be
circumvented by wusing a key of ASNKWL; however the user must
be aware of the fact that when default processing is in effect
each option is treated as if it were preceded by a -keyword.)

6. A key of ASRAWI (or an option type of ASRAWI) will turn on the
end-of-line indicator and any further attempts to read from the
current command line will return an end-of-line condition. To
turn off the end-of-line indicator, CMDLS$A must be called with
a key of ASRSET or ASNEXT.

16-5 First Edition

SUBROUTINES, VOLUME IV CMDLSA

7. A buffer length that is too small to contain the text of an
option will cause that option to be truncated and an error
message to be displayed.

8. Default keyword entries that have a numeric option should be
avoided as PRIMOS may intercept them as register settings.

9. A negative hexadecimal option that consists only of alphabetic
characters (such as -FF) is always interpreted as a -keyword.

10. Keyword entries in the keyword table with the same keyword
index are considered synonyms. A keyword may have any number
of synonyms, each with different option specifications.
However, if a keyword with synonyms 1is also a default and
default processing is in effect, the option specifications for
the synonyms is ignored. (In other words, a default keyword
option always implies the first keyword in a synonym chain.)

11. Null entries in the command 1line are only permitted for
keywords that have an option status of ASOPTL. All other null
entries will be treated as either a missing option or an
unrecognized keyword.

12. Calls to CMDLS$A and RDTKS$S$ on the same command line should be
avoided, as CMDLSA uses RDTK$$ to perform a look ahead when a

-keyword is encountered.

13. All text is forced to uppercase unless enclosed in quotes or
read as raw text (ASRAWI).

Kwlist Format

The kwlist array consists of three sections. The first section
contains control information, the second contains the keyword entry
table, and the third contains the default list.

First Edition 16-6

D)

Y

CMDLSA

Control Information

PARSING ROUTINE

Word 1

Word 2

Number (n) of keyword entries in table, must be
greater than 0.

Maximum length of keyword text in characters, must
be greater than or equal to 2 and not more than 80.
All keywords must have the same length and therefore
it may be necessary to pad them with blanks.

Keyword Entry Table

Words 1 to n

Word n+l

Word n+2

Word n+3

Word n+4

Text of keyword. The actual number of
characters must be equal to the maximum
keyword length.

Keyword index, must be greater than 0.

Minimum number of characters in the keyword to

match, including leading minus sign. The number
must be no less than 2 and no greater than the
maximum keyword length. A 0 or negative value

causes the keyword to be ignored when the table is
searched. This allows keyword text to exist as
documentation.
Option status; possible values are:
ASNONE No option may follow keyword.
ASOPTL option may or may not follow keyword.
ASREQD option must follow keyword.
Option type:; possible values are:
ASNONE If status is ASNONE.
ASBIN option must be a binary number.
ASDEC option must be a decimal number.
AS$OCT option must be an octal number.
ASHEX option must be a hexadecimal number.

ASNAME, option must be a name.

ASNBIN option may be a name or a binary
number.

16-7 First Edition

SUBROUTINES, VOLUME IV

CMDLSA

ASNDEC option may be a name or a decimal
number.

ASNOCT option may be a name or an octal
number.

ASNHEX option may be a name or a hexadecimal
number. If the option consists of all
alphabetic characters, which also
constitute a wvalid hexadecimal number,
it will be interpreted as such -- for
example, FACE.

ASRAWI option is the remainder of the command
line after the current -keyword is read
as raw text. Use of this option will
turn on the end-of-line indicator in
the same manner as a key of ASRAWI.

Default List
Word 1 Number (n) of default keywords, must be greater than

or equal to 0.

Words 2 to n+l List of keyword indices, previously defined in the
keyword entry table, which will be used when default

processing is

in effect. A default keyword entry

may not have an option status of ASNONE.

Error Messages

The function value will be false if any of the following errors occur:

BAD KEY

BUFFER LENGTH LESS THAN ZERO

NAME TOO LONG. (name text)

UNRECOGNIZED KEYWORD. (keyword text)
BAD KEYWORD OPTION. (option text)

MISSING KEYWORD OPTION.

NO. OF KEYWORD ENTRIES MUST BE .GT. ZERO.
MAX KEYWORD LENGTH MUST BE .GE. 2 AND .LE. 80.
1ST CHARACTER OF KEYWORD MUST BE ’-’. (keyword text)

KEYWORD MAY NOT BE A NUMBER.
KEYWORD INDEX MUST BE .GT.

(keyword text)

ZERO. (keyword text)

MIN CHARACTERS TO MATCH MUST BE .LE. MAX KEYWORD LENGTH.

(keyword text)

INVALID OPTION STATUS. (keyword text)
INVALID OPTION TYPE. (keyword text)

NO. OF DEFAULTS MUST BE .GE.

ZERO.

DEFAULT NOT DEFINED IN KEYWORD LIST. (default index)
INVALID DEFAULT OPTION STATUS. (keyword text)

MIN CHARACTERS TO MATCH MUST BE .GE. 2. (keyword text)
UNDETERMINED ERROR> (text of last keyword or option read)

First Edition

16-8

J

J

M)

CMDLS$A

Example (s)

Cc
Cc

TEST PROGRAM FOR CMDLSA

IMPLICIT INTEGER*2 (A-2Z)
INTEGER*4 VALUE

DIMENSION BUFFER(10),KWLIST (128),INFO(10)

$INSERT SYSCOM>ASKEYS

C

10

99

15

20

100

* % o o A A F % * % * *

*

DATA KWLIST /11,14,

" *max chars: 14’,1,0,ASREQD,ASDEC,

' -NDECIMAL',2,2,AS0PTL, ASNDEC,
'-OCTAL’, 4,2,A$REQD,ASOCT,
-NOCTAL', 4, 3,AS0PTL, ASNOCT,

’-HEXADECIMAL’,5,2,ASREQD, ASHEX,
-NHEXADECIMAL’, 6,3,ASOPTL, ASNHEX,

' -NAME'’, 7,5, ASREQD, ASNAME,

' -MAYBE', 8, 6, ASOPTL, ASNAME,
' -NONE’ , 9, 5, ASNONE, ASNONE,

" -QUIT’, 10,2, ASNONE, ASNONE,
*-TITLE’,99,2,AS$OPTL, ASRAWI,
4,1,2,8,7/

BUFLEN = 20
KEY = ASREAD

PARSING ROUTINE

IF (CMDLSA(KEY,KWLIST,KWINDX,BUFFER,BUFLEN, TYPE, VALUE, INFO))

GO TO 15

PRINT 99

FORMAT (/' TRY AGAIN,TURKEY !’)
CALL EXIT

IF (KWINDX.EQ.10) CALL EXIT

IF (KWINDX.NE.ASNONE) GO TO 20
KEY = ASNEXT

GO TO 10

KEY = ASREAD

PRINT 100 BUFFER,KWINDX, TYPE,VALUE, INFO (1)

FORMAT (/10A2//KWINDX TYPE VALUE CHARS’/2X,4(I3,6X))

GO TO 10
END

16-9

First Edition

'.w ‘

)

PART YV

SORT LIBRARIES AND
FORTRAN MATRIX LIBRARY

M)

9

17
Sort Libraries

GENERAL OVERVIEW

Part V of this Volume presents descriptions of the Sort Libraries and
the MATHLB (Matrix) Library. Chapter 17 describes several sort
subroutines available to the user in either R-Mode or V-Mode libraries.
Chapter 18 describes the R-Mode subroutines available in MATHLB.

SORT SUBROUTINE LIBRARIES

PRIMOS contains many subroutines for performing disk or internal sorts.
These subroutines are contained in four libraries:

e VSRTLI
e SRTLIB
e VMSORT
e MSORTS

After a brief survey of these libraries, there is a summary of the
subroutines in each 1library, followed by important information on
records, collating sequence, keys, tag/nontag sorts, and the use of

open file wunits. Finally, each sort routine receives a detailed
description.

17-1 First Edition

SUBROUTINES, VOLUME IV

VSRTLI: 1is the V-mode sort library. It contains the routine SUBSRT,
which sorts a single input file on ASCII keys, and the routine ASCSS,
that sorts and merges up to 10 input files and handles a variety of key
types. These two routines accept larger records and more keys than
their corresponding R-mode versions, which are located in SRTLIB. Both
SUBSRT and ASCS$$ call SRTF$S, another VSRTLI routine. SRTF$S sorts up
to 20 input files and accepts a variety of key types.

VSRTLI also contains a set of cooperating sort routines and cooperating
merge routines. These allow you to use your own input and output
procedures. Strategies for using these cooperating routines are
discussed in the sections called Cooperating Sort Subroutines and
Cooperating Merge Subroutines, below. A sample program that uses the
cooperating sort subroutines is included.

SRTLIB: is the R-mode sort library. It contains the R-mode versions
of SUBSRT and ASCSS$S.

VMSORT: is the V-mode 1library containing routines that perform
different types of in-memory sorts (heap, bubble, partition exchange,
radix exchange, straight insertion, binary search, and diminishing
increment) . VMSORT also has a binary-search and table-building
subroutine.

MSORTS: 1is the R-mode version of VMSORT.

Table 17-1 shows the subroutines by function. Table 17-2 shows which
subroutines are located in each sort library.

Caution

R-mode subroutines can be called from FIN and PMA in R mode
only. If you call an R-mode routine from a program in a
different mode, the results are unpredictable. Refer to the
FORTRAN and PMA chapters in Volume I for information on
declaring parameters in FTN and PMA, respectively.

First Edition 17-2

)

)

Table 17-1

Sort Routines by Function

SORT LIBRARIES

Sort one file on ASCII key(s).

Sort (multiple key types) or merge sorted files.

Merge sorted files.
Return next merged record to sort.
Close merged input files.

Sort one or several input files.
Prepare sort table and buffers.
Get input records.

Sort tables prepared by SETUSS.
Get sorted records.

Close all sort units.

Heap sort.

Partition exchange sort.
Diminishing increment sort.
Radix exchange sort.

Insertion sort.
Bubble sort.

Binary search or build binary table.

SUBSRT
ASCSSS
MRG1$S
MRG25S
MRG3$S

SRTFS$S
SETUSS
RLSES$S
CMBNSS
RTRNSS
CLNUS$S

HEAP
QUICK
SHELL
RADXEX

INSERT
BUEBLE
BNSRCH

17-3

First Edition

SUBROUTINES, VOLUME IV

Table 17-2
Sort Subroutines by Library
SRTLIB VSRTLI MSORTS VMSORT
SUBSRT SUBSRT HEAP HEAP
ASCS$$ ASCS$$ QUICK QUICK
SRTFS$S SHELL SHELL
SETUSS RADXEX RADXEX
RLSESS INSERT INSERT
CMBN$S BUBBLE BUBBLE
RTRNSS BNSRCH BNSRCH
CLNUSS
MRG1$S
MRG2$S
MRG35S

Record Types

The following record types are handled by the VSRTLI library routines.

Compressed Source: Record with compressed blanks, delimited by a new
line character (’212). Compressed source lines cannot contain data
which may be interpreted as a blank compression indicator (’221) or new
line character.

Uncompressed Source: Record with no blank compression, delimited by a
newline character (’212). Uncompressed source lines cannot contain
data which may be interpreted as a new line character.

Variable Length: Record stored with length (in halfwords) in the first
halfword. This length does not include the first halfword which
contains the count. Files containing records of this type are also
called binary files (not the same as object files produced by a
compiler) .

Note

To sort variable 1length records, you must supply character
varying strings for subroutine parameters.

Fixed Length: Record containing data but no length information. The
length must be defined as the maximum 1line size. (If a new line
character is appended to each record to make the file acceptable input
to EDITOR (ED), the character must be included in the length.)

First Edition 17-4

))

M)

Y)

SORT LIBRARIES

Default Record Type: The default depends upon the key types specified.

(See Key Definitions, below.) The input type defaults to variable
length if the key specifies a single-precision (16-bit) integer,
double-precision (32-bit) integer, or single- or double-precision real
number. Otherwise, the default is compressed source. If the output
type is not specified, it is assumed to be the same as the input type.
SRTLIB routines use only compressed-source and variable records.

Note

If multiple input files are used, they must all contain records
of the same type.

Record Length

The maximum record length allowed is 508 characters in R-mode and 32760
characters in V-mode. "WARNING-LINE TRUNCATED" is printed whenever the
data (not including record delimiters) exceeds the maximum record
length and the excess data is ignored. Output record length defaults
to the input record length.

Collating Sequence

You may sort ASCII keys using the EBCDIC rather than the ASCII
collating sequence. This option is specified in the spcls(2) parameter
of SRTF$S and SETUSS.

Key Definitions

A sort key is a portion of the record that determines the position of
the record in the sorted output. Most routines allow you to sort on
multiple keys. For many routines you must specify the starting and
ending positions of the keys 1in the data record. Specify the
appropriate columns (for character data) or bytes (for binary data).
Each key must start and end on a byte boundary. An improperly defined
key (for example, a key whose ending byte is greater than the record
length) produces vunpredictable results. With compressed source
records, the key is padded with spaces.

In R-mode you may specify 20 keys each with a maximum length of 312
characters.

In V-mode you may specify up to 64 key fields, with a total length less

than or equal to the maximum record length of 32760 characters. For
fixed-length records, the routines verify that key fields are contained

17-5 First Edition

SUBROUTINES, VOLUME IV

within the record length. Other restrictions on key length are
mentioned below. Each key type is specified as a parameter. The
available key types are the following:

ASCII Keys: Character strings, stored one character per byte. ASCII
keys are limited only by the length of the record in V mode.

Signed Numeric ASCII Keys: Require one byte per digit and include the
following types:

Numeric ASCII, leading separate sign
Numeric ASCII, trailing separate sign
Numeric ASCII, leading embedded sign
Numeric ASCII, trailing embedded sign

A space 1is treated as a positive sign. Signed numeric ASCII keys may
be as long as 63 digits plus sign.

When the sign is separate, a positive number has a plus sign(+) and a
negative number has a minus sign(-). If the sign is embedded, a single
character is used to represent the digit and sign. Embedded sign
characters are:

Digit Positive Negative
0 0,-,+,{ }i~
1 1A J
2 2B K
3 3¢C L
4 4D M
5 S E N
6 6 F o
7 76 P
8 8 H Q
9 91I R
First Edition 17-6

J)

)

)

)

SORT LIBRARIES

Unsigned Numeric ASCII Keys: Stored one digit per byte and are limited
only by the length of the record.

Integer and Real Keys: Include the following types:

Key Byte Length Range
Single-precision integer 2 -32767 to +32767
Double-precision integer 4 -2**3]1 to +2**31-1
Single-precision real 4 +(10**-38 to 10**38)
Double-precision real 8 +(10**-9902 to 10%**9825)
Unsigned integer 2 0 to 65535

Packed Decimal Keys: Stored two digits per byte. The last byte
contains the final digit plus sign. A negative field has a hex D in
the sign nibble. All other four-bit combinations in the sign nibble
represent a positive sign. A packed field must have an odd number of
digits and may have up to 63 digits plus sign.

Arguments

Numeric parameters are INTEGER*2 (fixed bin(15)), unless otherwise
noted; refer to the sample declaration statements for specific
information. Character strings such as pathnames are received as
integer arrays by the subroutines.

Tag Sorts

Some sort subroutines offer two types of sorts: tag sorts and nontag
sorts. You can choose the type of sort by setting a parameter. This
choice has the following meaning. When a routine cannot perform a sort
completely in the memory allocated, it creates temporary work files in
which it stores sorted pieces of the data. These sorted pieces are
then merged to create the output file. A tag sort stores the input
records separately from the key data. After all the keys have been
sorted and merged, the corresponding records are located and returned.
This last phase may be time-consuming for a very large file. A nontag
sort stores each input record with its sort key. This method
eliminates the search for each record after the merge, but requires
more disk space. Furthermore, a nontag sort is not always faster than
a tag sort because merging records and keys requires more I/O than
merging keys only.

17-7 First Edition

SUBROUTINES, VOLUME IV

The following are some criteria (in suggested order of importance) for
selecting a tag sort versus a nontag sort:

e If disk space is a problem, use a tag sort.

e If the input file is small, use either type of sort.

e If the input file is large, use a nontag sort.

e If the input file is partially ordered, use a nontag sort.

e If the input file is not ordered, use a tag sort.

Using Open File Units

The SRTF$S, SETUS$S, and MRG1$S subroutines allow you to use open file
units for input and output files. Using open file units can save you
time. If an input or output file is already open, you need not close
it only to have the sort routine open it again.

When you use an open file unit, specify 0 for the pathname length
parameter of the sort routine. Before you call the sort routine, be
sure that the file pointer is positioned at the beginning of the open
file.

First Edition 17-8

))

J

AR

SORT LIBRARIES

VSRTLI (V-MODE) SUBROUTINES

VSRTLI routines follow a consistent naming convention to avoid possible
conflict between user-written routines and system routines. BAll entry
points end with the suffix $S (except SUBSRT and ASCSS, which remain
the same for compatibility with earlier versions of the library).
Subroutines that are wused internally by the VSRTLI routines have a
suffix of $$S and should not be called from user routines.

For the VSRTLI routines, you may specify up to 64 keys. The maximum
record length is 32760 bytes.

17-9 First Edition

SUBROUTINES, VOLUME IV

SUBSRT

Purgose

SUBSRT sorts a single input file containing compressed source records.
The file is sorted on up to 64 ASCII keys in ascending order. Maximum
record length is 32760 bytes (characters).

Usage

DCL SUBSRT ENTRY (CHARACTER(80), FIXED BIN(15), CHARACTER(80),
FIXED BIN(15), FIXED BIN(15), 64 FIXED BIN(1l5),
64 FIXED BIN(15), FIXED BIN(15), FIXED BIN(31));

CALL SUBSRT (path_1, len_1, path_2, len_2, numkey, nstart, nend,
npass, nitem);

Parameters
path_1
INPUT. Input pathname, up to 80 characters.
len_1
INPUT. Length of input pathname in characters.
path_2
INPUT. Output pathname, up to 80 characters.
len_2
INPUT. Length of output pathname in characters.
numkey
INPUT. Number of keys (pairs of starting and ending columns, or
starting and ending bytes if binary). (Maximum is 64, default is
1.)
nstart

INPUT. Array containing starting columns/bytes of keys. (Each
must be > 1).

First Edition 17-10

)

)

SUBSRT SORT LIBRARIES

nend

INPUT. Array containing ending columns/bytes of keys.
be < the maximum record length.)

npass
OUTPUT. Number of passes made during the sort.
nitem

OUTPUT. Number of items returned in the output file.

Loading and Linking Information

VSRTLI - V-mode

(For the R-mode version of SUBSRT, see SRTLIB (R-MODE)

(Each must

SUBROUTINES,

later in this chapter.)

17-11

First Edition

SUBROUTINES, VOLUME IV

ASCS$$

Alternate Name

A nonstandard alternate name for this subroutine is ASCSRT. Avoid this
calling form.

Purpose

ASCS$$ sorts and merges compressed-source or variable-length records.
Maximum record length is 32760 bytes. A variety of key types may be
used, with ascending and descending keys within the same sort or merge.
(The R-mode version handles fewer key types.) When equal keys are
sorted, the input order is maintained.

Usage

DCL ASCS$$ ENTRY (CHARACTER(80), FIXED BIN(15), CHARACTER(80),
FIXED BIN(15), FIXED BIN(15), 64 FIXED BIN(15),
64 FIXED BIN(15), FIXED BIN(15), FIXED BIN(31),
64 FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
CHARACTER (80*MGCNT) , MGCNT(FIXED BIN 15),
PTR, FIXED BIN(15), 64 FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15), MGCNTFIXED BIN(15)):

CALL ASCS$$(path_1, len_1l, path_2, len_2, numkey, nstart, nend,
npass, nitem, nrev, ispce, mgcnt, mgbuff, len,
ADDR(buffer), msize, ntype, linsiz, nunits, units);

Parameters
path_1

INPUT. Input pathname, up to 80 characters.
len_1

INPUT. Length of input pathname in characters.

path_2

INPUT. Output pathname, up to 80 characters.
len_2

INPUT. Length of output pathname in characters.

First Edition 17-12

))

)

ASCSSSS SORT LIBRARIES

numkey
INPUT. Number of keys (pairs of starting and ending columns, or
starting and ending bytes if binary). (Maximum is 64, with a
default of 1.)

nstart

INPUT. Array containing starting columns/bytes of keys. (Each
must > 1.)

nend

INPUT. Array containing ending columns/bytes of keys. (Each must
be < linsiz.)

npass
OUTPUT. Number of passes made during the sort.
nitem
OUTPUT. Number of items in output file.
nrev
INPUT. Array containing sort order for each key:
0 Ascending
1 Descending
Default is 0 (ascending).
ispce
INPUT. Option to specify treatment of blanks:
0 Include blank lines in sort (default).
1 Delete blank lines.
mgcnt

INPUT. Number of merge files (up to 10). (These files are merged
with the input file.)

mgbuff

INPUT. Array containing merge filenames, up to 80 characters each
(Pathnames may be used.)

17-13 First Edition

SUBROUTINES, VOLUME IV ASCS$$

len
INPUT. Array containing length of merge filenames in characters.

ADDR (buffer)
INPUT. Obsolete —- specify as 0.

msize
INPUT. Size (<65536) of common block for sort in halfwords.
Should be record size times maximum number of records expected. If
nonzero, msize must be at least 1024 (one page) and no more than 64
pages. If larger, the message "WARNING-PRESORT BUFFER SHOULD NOT
BE LARGER THAN ONE SEGMENT" is issued, and the default is used.
Default is one segment (65536 halfwords).

ntype

INPUT. Optional. Array containing type of each key:

1 ASCII

2 16-bit integer

3 Single-precision real

4 Double-precision real

5 32-bit integer

6 Numeric ASCII, leading separate sign
7 Numeric ASCII, trailing separate sign
8 Packed decimal

9 Numeric ASCII, leading embedded sign
10 Numeric ASCII, trailing embedded sign
11 Numeric ASCII, unsigned
12 ASCII, lowercase sorts equal to uppercase
13 Unsigned integer

Default is all ASCII keys.

First Edition 17-14

))

)

ASCSSS

linsiz

INPUT. Optional. Maximum size of
Default is 32760.

nunits
SCRATCH. Obsolete. May be omitted.
units

SCRATCH. Obsolete. May be omitted.

Loading and Linking Information

VSRTLI - V-mode

SORT LIBRARIES

record in characters (bytes).

(For R-mode version of ASCSS, see SRTLIB (R-MODE) SUBROUTINES later in

this chapter.)

17-15

First Edition

SUBROUTINES, VOLUME IV

SRTF$S

Purgose

SRTFS$S sorts a maximum of 20 input files into a single output file. It
is called by the previous two sorts.

Usage

DCL SRTF$S ENTRY (CHAR(80, INCNT), INCNT FIXED BIN(15),
INCNT FIXED BIN(15), FIXED BIN(15),
CHARACTER(80), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), 64 FIXED BIN(15),
64 FIXED BIN(15), 64 FIXED BIN(15),
64 FIXED BIN(15), FIXED BIN(15), 5 FIXED BIN(15),
5 FIXED BIN(15), 5 FIXED BIN(15), FIXED BIN(15));

CALL SRTF$S (inbuff, inlen, inunts, incnt, path2, len2, outunt,
numkey, nstart, nend, nrev, ntype, code, inrec,
outrec, spcls, msize);

Parameters
inbuff

INPUT. Array containing input filenames. Ignored if open units
are used.

inlen
INPUT. Array containing lengths of input pathnames in characters
(up to 80 characters each). Specify 0 for pathname lengths if open
units are used.
inunts
INPUT. Array containing input file units (if open units are used).
incnt
INPUT. Number of input files (up to 20).

path2

INPUT. Output file pathname, up to 80 characters. Ignored if an
open unit is used.

First Edition 17-16

)

)

M)

D)

SRTFS$S SORT LIBRARIES

len2

INPUT. Length of output pathname in characters. Specify 0 if an
open unit is used.

outunt
INPUT. Output file unit (if an open unit is used).

numkey
INPUT. Number of keys (pairs of starting and ending columns, or
starting and ending bytes if binary). (Maximum 1is 64, with a

default of 1.)

nstart

INPUT. Array containing starting columns/bytes of keys (Each must
be > 1.)

nend

INPUT. Array containing ending columns/bytes of keys (Each must be
< inrec(2).)

nrev
INPUT. Array containing sort order for each key:
0 Ascending (default)
1 Descending
ntype

INPUT. Array containing type of each key:

1 ASCII

2 16-bit integer

3 Single-precision real

4 Double-precision real

5 32-bit integer

6 Numeric ASCII, leading separate sign
7 Numeric ASCII, trailing separate sign
8 Packed decimal

9 Numeric ASCII, leading embedded sign

17-17 First Edition

SUBROUTINES, VOLUME IV SRTF$S

10 Numeric ASCII, trailing embedded sign

11 Numeric ASCII, unsigned

12 ASCII, lowercase sorts equal to uppercase
13 Unsigned integer

Default is all ASCII keys.

code

OUTPUT. Return code (Refer to Appendix A for more information.)

inrec

INPUT. Array containing input record information:

inrec (1) Input record type:
1 Compressed source (blanks compressed)
2 Variable length
3 Fixed length (inrec(2) must be
specified)
4 Uncompressed source (no blank
compression)

Default depends on the key types specified in
argument ntype.

inrec(2) Maximum input record size in characters (bytes).
Default is 32760. Required for sorting
fixed-length records.
inrec(3-5) Must be 0; reserved for future use.
outrec
INPUT. Array containing output record information:
outrec (1) Qutput record type. (See inrec.)

outrec (2) Maximum output record size in characters (bytes).

outrec(3-5) Must be 0; reserved for future use.

First Edition 17-18

J

J)

J

3

SRTF$S SORT LIBRARIES

spcls

INPUT. Array containing special options:

spcls (1) Space option:
0 Include blank lines in sort (default).
1 Delete blank lines.
spcls (2) Collating sequence:
0 Default (Prime ECS)
1 Prime ECS
2 EBCDIC
3 ASCII-8
4 IS50-7
spcls (3) Tag/nontag option:
0 Default (tag sort)
1 Tag sort
2 Nontag sort

spcls (4-5) Must be 0; reserved for future use.
msize
INPUT. Size of presort buffer in pages (units of 1024 halfwords),
not greater than 64. (Note that the wunits wused here are pages

which differ from the halfwords used by ASCS$$. Default is one
segment; 64 pages.)

Loading and Linking Information

VSRTLI - V-mode

17-19 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

COOPERATING SORT SUBRQUTINES

This section describes the following five subroutines:

e SETUSS
e RLSESS
e CMBNSS
e RTRNSS
e CLNUSS

These routines allow you to use your own input and output procedures.
If you use these routines, you must use all of them and call them in
the order listed above to ensure that the sort is done correctly.
These subroutines are available in V-mode only. All parameters are
INTEGER*2 in FTN; refer to the sample dcl statements for parameter
declarations in PL/I.

The cooperating sort routines are used as follows. SETUS$S creates a
table in which the sort is to be done, setting record size, record
type, and other attributes. It also determines whether the records are
to be read directly from the input files into the sort area or whether
they are to be accepted from an input procedure. It determines
whether, after sorting, the records are to be sent directly to the
output file or are to be postprocessed by an output procedure.

After calling SETUS$S and giving it the necessary information, your
program should call RLSESS. If you specified to SETUS$S that records
were to be read from a preprocessing input procedure, you must supply
the input procedure. The procedure should call RLSESS once for each
record to be sorted, supplying the record in the rlbuff parameter. If
you specified to SETUS$S that records were to be read directly from
input file(s), your program should call RLSE$S only once and should not
use the RLSE$S parameters. In this case, RLSE$S simply reads the
records from the input file(s) into the sort area.

Next, your program should call the sort procedure, CMBNS$S, to do the
actual sorting. Since SETUS$S should already have stored all
information about record size, type, and collating sequence, CMBNS$SS
accepts no parameters.

After calling CMBN$S, your program must call RTRN$S to obtain the
sorted records. If you specified to SETU$S that records were to be
postprocessed by an output procedure, RTRN$S uses its rtbuff parameter
to return records for postprocessing. If you specified to SETUSS that
records were to be returned directly to an output file, RTRNSS writes
the records to the output file.

Finally, your program must call CLNU$S to close files opened by RLSE$S
and RTRNS$S and to delete temporary sort files.

First Edition, Update 2 17-20

) I

J

M)

SORT LIBRARIES

These cooperating sort subroutines allow great flexibility in a sort
operation because the program that calls them can process the records
extensively before and after sorting. However, there is a tradeoff in
speed. Because input and output procedures involve a procedure call
for each record, and because preprocessing and postprocessing take
time, sorting with these routines is generally slower than sorting with
other routines.

An example of combined use of these subroutines is provided later in
this section.

17-21 First Edition

SUBROUTINES, VOLUME IV

SETUS$S

Purpose

SETU$S checks the parameters that you supply and sets up the tables for
the requested sort.

Usage

DCL SETUSS ENTRY (CHARACTER(80, INCNT), INCNT FIXED BIN(15),
INCNT FIXED BIN(15), FIXED BIN(15),
CHARACTER(80), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), 64 FIXED BIN(15), 64 FIXED BIN(15),
64 FIXED BIN(15), 64 FIXED BIN(15), FIXED BIN(15),
5 FIXED BIN(15), 5 FIXED BIN(15), 5 FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15), FIXED BIN(15)):

CALL SETUSS (inbuff, inlen, inunts, incnt, path2, len2, outunt,
numkey, nstart, nend, nrev, ntype, code, inrec,
outrec, spcls, msize, iproc, oproc):

Parameters

inbuff

INPUT. Array containing input filenames (Ignored if open units are
used.)

inlen
INPUT. Array containing lengths of input pathnames in characters
(up to 80 characters each). (Specify 0 for pathname lengths if
open units are used.)
inunts
INPUT. Array containing input file units (if open units are used).
incnt

INPUT. Number of input files (up to 20).

path2

INPUT. Output file pathname, up to 80 characters. (Ignored if an
open unit is used.)

First Edition 17-22

J

)

)

3

SETUSS SORT LIBRARIES

len2

INPUT. Length of output pathname in characters. (Specify 0 if an
open unit is used.)

outunt
INPUT. Output file unit (if an open unit is used).

numkey
INPUT. Number of keys (pairs of starting and ending columns, or
starting and ending bytes if binary). (Maximum is 64, default is
1.)

nstart

INPUT. Array containing starting columns/bytes of keys. (Each
must be > 1.)

nend

INPUT. Array containing ending columns/bytes of keys. (Each must
be < inrec(2).)

nrev
INPUT. Array containing sort order for each key:
0 Ascending (default)
1 Descending
ntype

INPUT. Array containing type of each key:

1 ASCII

2 Single-precision integer

3 Single-precision real

4 Double-precision real

5 Double-precision integer

6 Numeric ASCII, leading separate sign
7 Numeric ASCII, trailing separate sign
8 Packed decimal

9 Numeric ASCII, leading embedded sign

17-23 First Edition

SUBROUTINES, VOLUME IV SETUSS

10 Numeric ASCII, trailing embedded sign

11 Numeric ASCII, unsigned

12 ASCII, lowercase sorts equal to uppercase
13 Unsigned integer

Default is all ASCII keys.
code

OUTPUT. Return code. (Refer to Appendix A for more information.)
inrec

INPUT. Array containing input record information:

inrec (1) Input record type:
1 Compressed source (blanks compressed)
2 Variable length
3 Fixed 1length (inrec(2) must be
specified)
4 Uncompressed source (no blank
compression)

Default depends on the key types specified in

ntype.
inrec (2) Maximum input line size 1in characters (bytes).
Default is 32760. Required for sorting

fixed-length records.
inrec(3-5) Must be 0; reserved for future use.
outrec
INPUT. Array containing output record information:
outrec (1) Output record type. (See inrec.)
outrec(2) Maximum output line size in characters (bytes).
outrec(3-5) Must be 0; reserved for future use.
spcls

INPUT. Array containing:

First Edition 17-24

J

J

9

)

SETUSS SORT LIBRARIES

spcls (1) Space option:
0 Include blank lines in sort (default).
1 Delete blank lines.
spcls (2) Collating sequence:
0 Default (ASCII)
1 ASCII
2 EBCDIC
spcls (3) Tag/nontag option:
0 Default (tag sort)
1 Tag sort
2 Nontag sort

spcls (4-5) Must be 0; reserved for future use.
msize
INPUT. Size of common presort buffer in pages (units of 1024
halfwords), no greater than 64. The size should be at least the
product of the size of one record and the maximum number of records
expected. Default is one segment (64 pages).
iproc
INPUT. Input data source (used by RLSES$S):
0 Input file
1 Input procedure
oproc
INPUT. Output data destination (used by RTRNSS) :

0 Output file

1 Output procedure

Loading and Linking Information

VSRTLI - V-mode

17-25 First Edition

SUBROUTINES, VOLUME IV

RLSES$S

Purpose

RLSE$S reads records into the sort area. Depending upon the value of
iproc in the preceding SETUS$S call, RLSES$S reads records either from
input file(s) or from the buffer specified in the RLSES$S call.

Usage

DCL RLSE$S ENTRY (CHAR(*), FIXED BIN(15)):

CALL RLSES$S (rlbuff, length);

Parameters
rlbuff

INPUT. Buffer containing next record for sort.
length

INPUT. Length of record in characters or bytes. This 1is not
necessarily the full length of rlbuff.

Discussion

If you use an input procedure, you should call RLSE$S once for each
record to be read.

If you use an input file instead of an input procedure, you should call
RLSE$S only once per input file. If input is from a £file, multiple
calls to RLSES$S result in multiple occurrences of each record when
sorted.

Source records passed from an input procedure (when inrec(l) = 1 in the
SETUSS call) must end with a new 1line character (’212). Otherwise
RLSES$S issues the message, "WARNING-LINE TRUNCATED," and the last
character is overwritten by a NEWLINE character.

You may prefer to sort a text file as fixed-length records by reading

the records into the program with RDLIN$ rather than by sorting them as
source records.

Loading and Linking Information

VSRTLI - V-mode

First Edition 17-26

J)

) 'D

DD

SORT LIBRARIES

CMBNS$S

Purpose

CMBNS$S performs the internal sort. It uses the records provided by
RLSES$S together with the tables, collating sequence, and other
information provided by SETUSS. If the sort cannot be done within
allocated memory, CMBNS$S merges the strings previously sorted. (Refer

to Tag Sorts, earlier in this chapter, for details.)

Usage

DCL CMBN$S entry;

CALL CMBNSS;

Loading and Linking Information

VSRTLI - V-mode

17-27 First Edition, Update 1

SUBROUTINES, VOLUME IV

RTRN$S

Purpose
RTRNS$S returns the records sorted by CMBN$S. Records are returned

either to an output procedure or to an output file, depending on the
value of the oproc argument in the last call to SETUSS.

Usage
DCL RTRNS$S ENTRY(CHAR(*), FIXED BIN(15)):;

CALL RTRNSS (rtbuff, length):;

Parameters
rtbuff

OUTPUT. Buffer containing next sorted record. This parameter
should be large enough to hold the longest record sorted.

length

QUTPUT. Length of record in characters or bytes. When all records
have been returned, a call to RTRNS$S returns a record length of 0.

Discussion

If you use an output procedure, each call to RTRN$S calls the next
sorted record. The record is placed in rtbuff. If you want to save
the record, you must write it to an output file.

If you use an output file instead of an output procedure, you should
call RTRNS$S only once. In this case, the RTRN$S parameters are not
used but they are writeable, so you should include dummy variables.
Refer to the list of integers and the CALL RTRNS$S statement in the
sample included with the CLNU$S description.

Loading and Linking Information

VSRTLI - V-mode

First Edition, Update 1 17-28

J

J

J

)

3

SORT LIBRARIES

CLNUS$S

Purpose

CLNUSS closes all units opened by the sort routines and deletes any
temporary files.

Usage
DCL CLNUSS entry;

CALL CLNUSS:;

Loading and Linking Information

VSRTLI - V-mode

SAMPLE USER INPUT PROCEDURE

The following sample program demonstrates the use of an input procedure
with the sort subroutines. This input procedure selects for sorting
only those records in INPUTFILE that begin with AA.

OK SLIST SAMPLE.FTN

C~--SAMPLE PROGRAM WHICH CALLS SORT
C—————- TO DEMONSTRATE THE USE OF AN
C————- INPUT PROCEDURE BEFORE SORTING
SINSERT SYSCOM>KEYS.INS.FTN

$INSERT SYSCOM>ERRD.INS.FTN

Cc
INTEGER
& BUFFER(10), /* Buffer for reading file
& ERCODE, /* Error code
& INREC(5), /* Input record information
& OUTREC (5), /* Output record information
& SPCLS(5), /* Flags for special options
& TYPE /* File type returned when file opened
& DUMMY /* Dummy variable for RTRNS$S
c
DATA
C Input records are fixed length (20 characters):
& INREC / 3, 20, 0, O, O /,
C Output records are uncompressed source (to allow editing):
& OUTREC / 4, 20, 0, 0, O /,
C No special options:

& spcLs / 0, 0, 0, 0, O /

17-29 First Edition, Update 1

SUBROUTINES, VOLUME IV CLNUS$S
c
C Open the input file

c
C Initialize sort tables
CALL SETUSS
& (0, /* no input filenames
& 0, /* no lengths of filenames
& 0, /* no input file units
& o, /* no input filenames
& "OUTPUTFILE’, /* this is the output filename
& 10, /* its name is 10 chars long
& 0, /* no output file unit specified
& 1, /* sort file on one key
& 1, /* start sort at column one
& 20, /* end sort at column twenty
& 0, /* sort in ascending order
& 1, /* the key is all ASCII characters
& ERCODE, /* an error code will be returned
& INREC, /* input record information
& OUTREC, /* output record information
& SPCLS, /* use options requested (none&)
& 0, /* use default for presort buffer
& 1, /* input data is from procedure
& 0) /* output is to file
IF (ERCODE .NE. 0) CALL ERRPRS$ (K$NRTN, ERCODE,0,0,0,0)
C
c With everything initialized, Read records from input file:
100 READ (5, 200, END=300) BUFFER
200 FORMAT (10A2)
C
Cc Select the records to be sorted, and pass them so as to
C sort with the record length (i.e, 20 characters):
IF (BUFFER(l) .EQ. ‘AA’) CALL RLSES$S (BUFFER,20)
GO TO 100 /* read next record
C
C At end of input file, come here to finish up the sort:
300 CALL CMBNS$S /* do the actual sort
CALL RTRNS$S (DUMMY,DUMMY) /* send records to the output file
CALL CLNUS$S /* clean up after sorting
C
C Now close the input file:
CALL SRCH$$ (K$CLos, 0, 0, 1, 0, ERCODE)
IF (ERCODE .NE. 0) CALL ERRPRS$ (K$NRTN,ERCODE,0,0,0,0)
CALL EXIT
END
First Edition, Update 1 17-30

CALL SRCH$$ (KS$READ, ’INPUTFILE’, 9, 1, TYPE, ERCODE)
IF (ERCODE .NE. 0) CALL ERRPR$ (K$NRTN, ERCODE, 0,0,0,0)

)

y

J

D

3

CLNUSS SORT LIBRARIES

This program may be compiled, loaded, and run with the following
dialog:

The

OK FTN SAMPLE -64V -DCLVAR

0000 ERRORS [<.MAIN.>FTN-REV19.3]

OK SEG -LOAD

[SEG Rev. 20.2.B2 Copyright (c) 1986, Prime Computer, Inc.]
$ LO SAMPLE

$ LI VSRTLI

$ LI

LOAD COMPLETE

$ EXEC

Note

When compiling an F77 program, use the -INTS option for FTN
compatibility.

following listings show INPUTFILE and the sorted OUTPUTFILE.

OK SLIST INPUTFILE

AA EMPLOYEE1l
BB EMPLOYEES
BB EMPLOYEE3

cC EMPLOYEE4
AA EMPLOYEE2
AR EMPLOYEE6
cC EMPLOYEE?7
AA EMPLOYEEO
EE EMPLOYEES

OK SLIST OUTPUTFILE

EMPLOYEEO
EMPLOYEE1
EMPLOYEE2
EMPLOYEE®6

EEEB

17-31 First Edition, Update 1

SUBROUTINES, VOLUME IV

COOPERATING MERGE SUBRQUTINES

This section describes the merge subroutines MRG1$S, MRG2S5S, and
MRG3$S.

To merge two or more sorted files with no special processing, use
MRG1$S. If you want to postprocess the merged records, you may use the
three merge subroutines as follows:

e Call MRG1$S and supply it with specifications about the
operation to be performed and the files and records to be used.

® Call MRG2$S to get the merged records one at a time.

e Finally, call MRG3$S to close units and delete temporary files
opened by the other subroutines.

The cooperating merge routines are similar to the cooperating sort
subroutines described earlier. However, the merge routines differ from
the sort routines in their handling of output files. If you call
MRG1$S and supply an output file rather than an output procedure,
MRG1$S calls MRG2%S and MRG3$S itself. Do not call MRG2$S and MRG3$S
yourself if output is to a file.

First Edition, Update 1 17-32

J

J

J

M)

SORT LIBRARIES

MRG1$S

Purpose

MRG1$S merges two to eleven previously sorted files into a single
output file.

Usage

DCL MRG1$S ENTRY (CHARACTER (80, INCNT), INCNT FIXED BIN(15),
INCNT FIXED BIN(15), FIXED BIN(15),
CHARACTER(80), FIXED BIN(15), FIXED BIN(1l5),
FIXED BIN(15), 64 FIXED BIN(15), 64 FIXED BIN(15),
64 FIXED BIN(15), 64 FIXED BIN(15), FIXED BIN(15),
5 FIXED BIN(15), 5 FIXED BIN(15), 5 FIXED BIN(1l5),
FIXED BIN(15)):

CALL MRG1$S (inbuff, inlen, inunts, incnt, tree2, len2, outunt,
numkey, nstart, nend, nrev, ntype, code, inrec,
outrec, spcls, oproc):;

Parameters
inbuff

INPUT. Array containing input filenames. Ignored if open units
are used.

inlen
INPU. Array containing lengths of input pathnames in characters
(up to 80 characters each). Specify 0 for pathname lengths if open
units are used.
inunts
INPUT. Array containing input file units (if open units are used).
incnt
INPUT. Number of input files.

tree2

INPUT. Output file pathname, up to 80 characters. Ignored if an
open unit is used.

17-33 First Edition

SUBROUTINES, VOLUME IV MRG1$S

len2

INPUT. Length of output pathname in characters. Specify 0 if an
open unit is used.

outunt
INPUT. Output file unit (if an open unit is used).
nunkey

INPUT. Number of keys (pairs of starting and ending columns, or
starting and ending bytes if binary). Maximum is 64, default is 1.

nstart

INPUT. Array containing starting columns/bytes of keys. (Each
must be > 1.)

nend

INPUT. Array containing ending columns/bytes of keys. (Each must
be < inrec(2).)

nrev
INPUT. Array containing sort order for each key:
0 Ascending (default)
1 Descending
ntype

INPUT. Array containing type of each key:

1 ASCII

2 16-bit integer

3 Single-precision real

4 Double-precision real

5 32-bit integer

6 Numeric ASCII, leading separate sign

7 Numeric ASCII, trailing separate sign

8 Packed decimal

9 Numeric ASCII, leading embedded sign
First Edition 17-34

J)

)

)

)

MRG18S

SORT LIBRARIES

10 Numeric ASCII, trailing embedded sign

11 Numeric ASCII, unsigned

12 ASCII, lowercase sorts equal to uppercase.
13 Unsigned integer

Default is all ASCII keys.

code

OUTPUT. Return code. (Refer to Appendix A for more information.)

inrec

INPUT. Array containing input record information:

inrec (1) Input record type:
1 Compressed source (blanks compressed)
2 Variable length
3 Fixed 1length (inrec(2) must be
specified)
4 Uncompressed source (no blank
compression)
Default depends on the key type specified in ntype.
inrec(2) Maximum input record size in characters (bytes).
Required for sorting fixed-length records. Default
is 32760.
inrec(3-5) Must be 0; reserved for future use.
outrec
INPUT. Array containing output record information:
outrec (1) Qutput record type. (See inrec.)
outrec (2) Maximum output record size in characters (bytes).
outrec(3-5) Must be 0; reserved for future use.
17-35 First Edition

SUBROUTINES, VOLUME IV MRG1$S

spcls

INPUT. Array containing:

spcls (1) Space option:
0 Include blank lines in sort (default).
1 Delete blank lines.
spcls (2) Collating sequence:
0 Default (ASCII)
1 ASCII
2 EBCDIC

spcls (3-5) Must be 0; reserved for future use.
oproc
INPUT. Output data destination (for use by MRG2S$S):
0 Output file

1 Output procedure

Loading and Linking Information

VSRTLI - V-mode

First Edition 17-36

J

Y

SORT LIBRARIES

MRG2$SS

Purpose
This subroutine is used only after MRG1$S has been called to set up the
merge area, record and file specifications, and collating keys. MRG2$S

returns the next merged record. Do not call MRG2$S when output is to a
file.

Usage
DCL MRG2$S ENTRY (CHAR(*), FIXED BIN(15)):

CALL MRG2$S (rtbuff, length):

Parameters

rtbuff

OUTPUT. Buffer containing next merged record. Should be large
enough to hold longest record merged.

length

OUTPUT. Length (in characters) of the record returned. Once all
records have been returned, MRG2$S returns a length of 0.

Loading and Linking Information

VSRTLI -— V-mode

17-37 First Edition

SUBROUTINES, VOLUME IV

MRG3$S

PUIEOSG

This subroutine is called only after MRG1$S and MRG2$S have been
called. MRG3$S <closes all units opened by the other merge routines.
Do not call MRG3$S when output is to a file.

Usage
DCL MRG3$S ENTRY:

CALL MRG3$S;

Loading and Linking Information

VSRTLI - V-mode

First Edition . 17-38

J

M)

R

SORT LIBRARIES

SRTLIB (R-MODE) SUBROUTINES

SRTLIB, the R-mode version of VSRTLI, holds two subroutines: SUBSRT
and ASCS$S. See the discussion at the beginning of this chapter for
the differences in these subroutines when used in R-mode instead of
V-mode.

17-39 First Edition

SUBROUTINES, VOLUME IV

SUBSRT

Purpose
SUBSRT sorts a single input file containing compressed source records.
The file is sorted on up to 20 ASCII keys in ascending order. Maximum

record length is 508 bytes (characters). Maximum key length for all
keys is 312 characters.

Usage

INTEGER*2 path_1(40), len_1, path_2(40), len_2, numkey,
X nstart (20), nend(20), npass, nitem

CALL SUBSRT(path_1, len_1, path_2, len_2, numkey, nstart,
X nend, npass, nitem)

Parameters
path_1

INPUT. Input pathname, up to 80 characters.
len_1

INPUT. Length of input pathname in characters.
path_2

INPUT. Output pathname, up to 80 characters.
len_2

INPUT. Length of output pathname in characters.
numkey

INPUT. Number of keys (pairs of starting and ending columns, or
starting and ending bytes if binary). Maximum is 20, default is 1.

nstart

INPUT. Array containing starting columns/bytes of keys. (Each
must be > 1.)

First Edition 17-40

J

Y

AR

SUBSRT SORT LIBRARIES

nend

INPUT. Array containing ending columns/bytes of keys.

be < the maximum record length.)
npass

OUTPUT. Number of passes made during the sort.
nitem

OUTPUT. Number of items returned in the output file.

Loading and Linking Information

SRTLIB - R-mode

(For the V-mode version of SRTLIB, see VSRTLI (V-MODE)

(Each must

SUBROUTINES,

earlier in this chapter.)

17-41

First Edition

SUBROUTINES, VOLUME IV

ASCS$$

Alternate Name

A nonstandard alternate name for this subroutine is ASCSRT. Avoid this
calling form.

Purpose

ASCS$$ sorts and merges compressed-source or variable-length records.
Maximum record length is 508 bytes. A variety of key types may be
used, with ascending and descending keys within the same sort or merge.
(The V-mode version handles more key types.) When equal keys are
sorted, the input order is maintained. Maximum total length for keys
is 312 characters.

Usage
INTEGER*2 path_1(1), len_1l, path_2(11), len_2, numkey,
X nstart (1), nend(l), npass, nrev(l), ispce,
x mgcnt, mgbuff(l), len(l), msize, ntype(l),
X linsiz, nunits, units
INTEGER*4 nitem
CALL ASCS$$(path_1, len_l1l, path_2, len_2, numkey, nstart,
X nend, npass, nitem, nrev, ispce, mgcnt, mgbuff,
X len, loc(buffer), msize, ntype, linsiz, nunits,
b'4 units)
Parameters
path_1

INPUT. Input pathname, up to 80 characters.
len_1

INPUT. Length of input pathname in characters.
path_2

INPUT. Output pathname, up to 80 characters.
len_2

INPUT. Length of output pathname in characters.

First Edition 17-42

))

)

ASCSS SORT LIBRARIES

numkey

INPUT. Number of keys (pairs of starting and ending columns, or
starting and ending bytes if binary). Maximum is 20, default is 1.

nstart
INPUT. Array containing starting columns/bytes of keys. (Each
must be > 1.)
nend INPUT. Array containing ending columns/bytes of keys. (Each
must be < the maximum record length.)
npass
OUTPUT. Number of passes made during the sort.
nitem
OUTPUT. Number of items returned in output file.
nrev
INPUT. Array containing order for each key:
0 Ascending
1 Descending
ispce
INPUT. Whether to take blanks into account:
0 Sort blank lines.
1 Delete blank lines.
mgcnt

INPUT. Number of merge files (up to 10). These file are merged
with the input file.

mgbuff

INPUT. Array containing merge filenames, up to 80 characters each.
Pathnames may be used.

len

INPUT. Array containing 1lengths of merge filenames in characters.

17-43 First Edition

SUBROUTINES, VOLUME IV

loc(buffer)
INPUT. Location of presort buffer.

msize

INPUT. Size of presort buffer in halfwords. The presort buffer
size should be as large as possible on P100 and P200 systems.
virtual memory systems, the best size must be determined by

experimentation.
ntype
INPUT. Optional. Array containing type of each key (default is
ASCII):
1 ASCII (default)
2 16_bit integer
3 Single_precision real
4 Double_precision real
5 32_bit integer
linsiz
INPUT. Optional. Maximum size of record in characters (bytes).
Default is 508.
nunits
INPUT. Optional. Number of file units available. (Four are used
by ASCSS$S.)
units

INPUT. Optional. Array containing available file units.

Loading and Linking Information

SRTLIB - R-mode

(For the V-mode version of ASCS$$, see VSRTLI (V-MODE) SUBROUTINES,

ASCSS$S

earlier in this chapter.)

First Edition 17-44

On

J)

M)

R

SORT LIBRARIES

MSORTS AND VMSORT SUBROUTINES

The MSORTS and VMSORT libraries contain several in-memory sort
subroutines and a binary-search and table-building routine. MSORTS and
VMSORT contain the same subroutines, except that MSORTS is the R-mode
version and VMSORT is the V-mode version.

The reference for most of the algorithms and timing studies is Donald
Knuth, "Sorting and Searching,” The Art of Computer Programming, vol.
3, Reading, MA: Addison-Wesley, 1973. The timing figures quoted are
based upon Knuth’s algorithms on his fictional machine (MIX). Since
these routines are more general, the timing formulas quoted here should
be used only as an indication of the relative merits of each algorithm
and not as exact computational tools.

The following routines are included in MSORTS and VMSORT:
HEAP Heap sort - based upon binary trees
QUICK Quick sort - partition-exchange
SHELL Shell sort - diminishing increment
RADXEX Radix exchange sort
INSERT Straight insertion sort
BUBBLE Bubble sort - interchange
BNSRCH Binary search

The binary search routine (BNSRCH) can be used either for table lookup
in an ordered table or for building a sorted table.

All routines accept multiword entries and multiword keys located
anywhere within the entry. All entries must be equal 1length and
keywords must be contiguous (no secondary keys).

The calling sequences for these routines are similar. However, each

sort has slightly different requirements. Except for RADXEX, all
routines have the same first five parameters.

Parameters Common to More Than One Subroutine

ptable

INPUT. Pointer to the first halfword of the table. (Not a PL/I
pointer.) For example, if the table is in an array table(a,b), the
parameter ptable = LOC (table). For routines in MSORTS, ptable is
a full 16-bit pointer and can be in the upper 32K of memory. For
VMSORT, ptable is a two-halfword pointer.

17-45 First Edition

SUBROUTINES, VOLUME IV

nentry

INPUT. Number of table entries (not halfwords) in the table --
that is, items to be sorted or searched. This parameter is a full
16-bit count, since there can be more than 32K entries in the
table.

nhwds

INPUT. Number of halfwords per entry. nhwds must be more than 0.
If nhwds is greater than 32K, there can be only a single entry.

fhword
INPUT. First halfword within the entry of the key field.

nkhwds
INPUT. Number of halfwords in the key field. nkhwds must be
greater than 0 and less than or equal to nhwds. fhword +

nkhwds - 1 must be no more than nhwds. (In other words, the key
field must be contained within an entry.)

npass
OUTPUT. Number of passes made during the sort (0 if error).

altbp
INPUT. Alternate return for bad parameters (used only with FORTRAN
—— use 0 for other languages).

RADXEX replaces the nkhwds parameter with the following:

fbit
INPUT. First bit within fhword of the key. fbit must be greater
than 0 and fhword + (nbit + fbit - 2)/16 must be no more than

nhwds. (In other words, the key field must be contained within an
entry.)

nbit

INPUT. Number of bits in the key. The key field must be contained
within an entry.

The routines HEAP, QUICK, RADXEX, and BUBBLE also require temporary
arrays of the following sizes (in halfwords):

First Edition 17-46

))

)

SORT LIBRARIES

BUBBLE tarray (nkhwds)
HEAP, QUICK tarray (nhwds)
RADXEX tarray(2*nbit)

These arrays are work arrays used internally by the subroutines. Their
space is provided by the user, but the subroutine initializes them.

All routines except RADXEX sort the table in increasing order where the
key is treated as a single, signed, multiword integer. For example,
the numbers 5, -1, 10, -3 would be sorted to -3, -1, 5, 10. Since for
RADXEX the key need not begin on a word boundary, RADXEX treats the key
as a single, unsigned, multiword (or partial-word) integer. Thus,
RADXEX would sort the same four numbers to 5, 10, -3, -1.

Loading and Linking Information

SRTLIB - R-mode

(For the V-mode version of ASCS$$, see VSRTLI (V-MODE) SUBROUTINES,
earlier in this chapter.)

17-47 First Edition

SUBROUTINES, VOLUME IV

BNSRCH

Purpose

BNSRCH sets up a binary table and performs a binary search.

Usage

DCL BNSRCH ENTRY (ADDR(TABLE), FIXED BIN(15), FIXED BIN(15),

FIXED BIN(15), FIXED BIN(15), CHARACTER (NKHWDS),
CHARACTER (NHWDS) , FIXED BIN(15), FIXED BIN(1S5),
FIXED BIN(15), FIXED BIN(15)):

CALL BNSRCH(ptable, nentry, nhwds, fhword, nkhwds, skey, fentry,

Parameters

Most of the BNSRCH parameters are described in the section, Parameters

index, opflag, altnf, altbp):

Common to More Than One Subroutine. The additional parameters are

described below.

skey
INPUT. Search key array.
fentry
OUTPUT. Found entry array.
index
OUTPUT. Entry number of found entry.
opflag
INPUT. Operation key:
0 Locate.
1 Locate and delete.
2 Locate or insert.
3 Locate and update.
First Edition 17-48

))

M)

BNSRCH SORT LIBRARIES

altnf

INPUT. Alternate return.

Discussion

Simple binary searching (opflag=0) tests each entry’s key field for a
match with skey. If the entry is found, it is returned in fentry and
the entry number is put into index. If the entry is not found, the
alternate return (altnf) is taken. If altnf is not specified, the
normal return is taken, and the entry is deleted from the table as well
as returned in fentry. 1In this case, index specifies where the entry
was.

Opflag=2 is the same as opflag=0 if the entry is found. However, if
the entry is not found, index is set to 0 before the return. altnf is
not taken.

Opflag=3 is the same as opflag=0 if the entry is not found. If the

entry is found, the contents of fentry and the found entry are
interchanged, thus updating the table and returning the old entry.

Loading and Linking Information

MSORTS - R-mode
VMSORT - V-mode

17-49 First Edition

SUBROUTINES, VOLUME IV

BUBBLE

Purpose

This routine performs a bubble (simple interchange) sort.

Usage

DCL BUBBLE ENTRY (ADDR (TABLE), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15), CHARACTER (2*NKHWDS),
FIXED BIN(15), FIXED BIN(15), FIXED BIN(15)):

CALL BUBBLE (ptable, nentry, nhwds, fhword, nkhwds, tarray, npass,
altbp, incr);

Parameters

Most of the BUBBLE parameters are described in the section, Parameters

Common to More Than One Subroutine. The additional parameters are
described below.

tarray
SCRATCH. Temporary array.
incr
INPUT. Used to sort nonadjacent entries. (Refer to the discussion

of incr in the description of INSERT, below.) Default is 1 (sort
adjacent entries).

Discussion

Running Time: If N is the number of entries, the average running time
for this routine is proportional to N**2, Bubble sorting is good only
for very small N, but is not as good as insertion sorting.

Loading and Linking Information

MSORTS - R-mode
VMSORT - V-mode
First Edition 17-50

)

)

M)

SORT LIBRARIES

HEAP

Purpose

A heap sort is based on a nonthreaded binary tree structure. The
algorithm consists of two parts: convert the table into a "heap," and
then sort the heap by an efficient top-down search of the tree. The

formal definition of a heap is as follows:

The keys K(1), K(2), K(3),..., K(N) constitute a "heap" if
K(J/2)>K(J) for 1<(J/2)<JI<N.

Usage

DCL HEAP ENTRY (ADDR(TABLE), FIXED BIN(15), FIXED BIN(1l5),
FIXED BIN(15), FIXED BIN(15), CHARACTER(2*NHWDS),
FIXED BIN(15), FIXED BIN(15)):

CALL HEAP (ptable, nentry, nhwds, fhword, nkhwds, tarray, npass, altbp):

Parameters

Most of the HEAP parameters are described in the section, Parameters
Common to More Than One Subroutine. The additional parameter is the
following:

tarray

SCRATCH. Temporary array.

Discussion

Running Time: If N is the number of entries, the average running time
is proportional to 23*N*1n(N) and the maximum is 26*N*1n(N). A heap
sort tends to be inefficient if N<2000, but for N>2000 it outperforms
all other sorts except QUICK.

Loading and Linking Information

MSORTS - R-mode
VMSORT - V-mode

17-51 First Edition

SUBROUTINES, VOLUME IV

INSERT

Purpose

Straight insertion sorting involves "percolating" each element into its
final position.

Usage

DCL INSERT (ADDR(TABLE), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), FIXED BIN<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>