
Prime Computer, Inc.

DOC10083-1LA
Subroutines
Reference Guide
Volume IV

&

;̂ffB

Subroutines Reference IV
Libraries and I/O

First Edition

by

Dick Frost

Updated for Rev. 22.0

by

John Breithaupt and Glenn Morrow

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk.
Revision Level 22.0 (Rev. 22.0).

Prime Computer, Inc.
Prime Park

Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
l i c e n s e .

Copyright (£) 1986 by Prime Computer, Inc. All rights reserved.

PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of
Prime Computer, Inc. DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS,
PERFORM, Prime INFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWAY,
PRIMIX, PRISAM, PST 100, PT25, PT45, PT65, PT200, PT250, PW153, PW200,
PW250, RINGNET, SIMPLE, 50 Series, 400, 750, 850, 2250, 2350, 2450,
2455, 2550, 2655, 2755, 4050, 4150, 6350, 6550, 9650, 9655, 9750, 9755,
9950, 9955, and 9955II are trademarks of Prime Computer, Inc.

PRINTING HISTORY

F i r s t Ed i t i on
Volume I (DOC10080-1LA) August 1986 for Revision 20.2
Volume II (DOC10081-1LA) August 1986 for Revision 20.2
Volume III (DOC10082-1LA) August 1986 for Revision 20.2
Volume IV (DOC10083-1LA) August 1986 for Revision 20.2
Volume V (DOC10213-1LA) August 1988 for Revision 22.0

Update 1
Volume II (UPD10081-11A) July 1987 for Revision 21.0
Volume III (UPD10082-11A) July 1987 for Revision 21.0
Volume IV (UPD10083-11A) July 1987 for Revision 21.0

Update 2
Volume II (UPD10081-12A) August 1988 for Revision 22.0
Volume III (UPD10082-12A) August 1988 for Revision 22.0
Volume IV (UPD10083-12A) August 1988 for Revision 22.0

Second Edition
Volume I (DOC10080-2LA) July 1987 for Revision 21.0

CREDITS

Project Support: Joan Karp
Editorial: Thelma Henner
I l lust ra t ion: Mingl ing Chang
Production: Judy Gordon

i i

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list:

U n i t e d S t a t e s C u s t o m e r s I n t e r n a t i o n a l

C a l l P r i m e Te l e m a r k e t i n g , C o n t a c t y o u r l o c a l P r i m e
t o l l f r e e , a t 1 - 8 0 0 - 3 4 3 - 2 5 3 3 , s u b s i d i a r y o r d i s t r i b u t o r .
Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (wi th in Massachusetts) 1-800-541-8888 (wi th in Alaska)
1-800-343-2320 (wi th in other s ta tes) 1-800-651-1313 (wi th in Hawai i)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

i n

Contents

A B O U T T H I S B O O K i x

PART I — INTRODUCTION

OVERVIEW OF SUBROUTINES

F u n c t i o n s a n d S u b r o u t i n e s 1 - 1
S u b r o u t i n e D e s c r i p t i o n s 1 - 2
S u b r o u t i n e U s a g e 1 - 4
S u b r o u t i n e P a r a m e t e r s 1 - 7

PART II — IOCS LIBRARY

INTRODUCTION TO IOCS

O r g a n i z a t i o n o f P a r t I I 2 - 1
Parameters Used for IOCS Subroutines 2-9

DEVICE ASSIGNMENT

Te m p o r a r y D e v i c e A s s i g n m e n t 3 - 1
P e r m a n e n t D e v i c e A s s i g n m e n t 3 - 8

DEVICE-INDEPENDENT DRIVERS

D a t a F o r m a t s 4 - 2

DISK SUBROUTINES

D r i v e r S u b r o u t i n e s 5 - 2
O b s o l e t e D i s k S u b r o u t i n e s 5 - 1 2

TERMINAL DRIVERS AND
TERMINAL/PAPER-TAPE SUBROUTINES

O v e r v i e w 6 - 1

OTHER PERIPHERAL DEVICES

L i n e P r i n t e r S u b r o u t i n e s 7 - 1
P r i n t e r / P l o t t e r s 7 - 1 2 g
C a r d P r o c e s s i n g S u b r o u t i n e s 7 - 2 1
M a g n e t i c T a p e s 7 - 3 6

PART III — SMLC/AMLC SUBROUTINES

8 SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

S y n c h r o n o u s C o n t r o l l e r s 8 - 2
A s y n c h r o n o u s C o n t r o l l e r s 8 - 2 0

PART IV — APPLICATION LIBRARY

9 INTRODUCTION TO APPLICATION LIBRARY

G e n e r a l D e s c r i p t i o n 9 - 1
H o w t o U s e P a r t I V 9 - 2
F o r m a t S u m m a r y 9 - 2
N a m i n g C o n v e n t i o n s 9 - 4
L i b r a r y I m p l e m e n t a t i o n P o l i c i e s 9 - 5
S t r i n g M a n i p u l a t i o n R o u t i n e s 9 - 6
U s e r Q u e r y R o u t i n e s 9 - 7
F i l e S y s t e m R o u t i n e s 9 - 7
S Y S C O M > A $ K E Y S 9 - 9

10 STRING ROUTINES

Summary of String Manipulation
R o u t i n e s 1 0 - 1

11 USER QUERY ROUTINES

Summary of User Query Routines 11-1

12 SYSTEM INFORMATION ROUTINES

Summary of System Information
R o u t i n e s 1 2 - 1

13 RANDOMIZING ROUTINES

Summary of Randomizing Routines 13-1

14 CONVERSION ROUTINES

Summary o f Convers ion Rout ines 14-1

15 FILE SYSTEM ROUTINES

Summary of File System Routines 15-1

16 PARSING ROUTINE

P a r s i n g R o u t i n e 1 6 - 1

PART V — SORT LIBRARIES AND
FORTRAN MATRIX LIBRARY

17 SORT LIBRARIES

G e n e r a l O v e r v i e w 1 7 - 1
S o r t S u b r o u t i n e L i b r a r i e s 1 7 - 1
VSRTL I (V-mode) Sub rou t i nes 17 -9
C o o p e r a t i n g S o r t S u b r o u t i n e s 1 7 - 2 0
Cooperat ing Merge Subrout ines 17-32
SRTLIB (R-mode) Subrou t ines 17 -39
MSORTS and VMSORT Subroutines 17-45

18 FORTRAN MATRIX LIBRARY (MATHLB)

S u b r o u t i n e C o n v e n t i o n s 1 8 - 3

APPENDIXES

A ERROR HANDLING

I n t r o d u c t i o n A - 1
E r r o r C o d e s A - 1
The Error-handling Routine ERRPR$ A-2

B ERROR HANDLING FOR I/O SUBROUTINES

I n t r o d u c t i o n B - l
Subrout ines for Error Handl ing B- l

C SVC INFORMATION

Supervisor Call Instructions
Called by PRIMOS Subroutines C-l

S V C I n t e r f a c e f o r I / O C a l l s C - l
S V C I n t e r f a c e C o n s i d e r a t i o n s C - l
Operating System Response

t o a n S V C I n s t r u c t i o n C - 2

D OBSOLETE INDICATION AND CONTROL SUBROUTINES

O v e r v i e w D - l

E OTHER OBSOLETE SUBROUTINES E-1

F D A T A T Y P E E Q U I V A L E N T S F - l

INDEX OF SUBROUTINES BY FUNCTION FX-1

INDEX OF SUBROUTINES BY NAME SX-1

I N D E X T O V O L U M E I V X - l

v i i

About
This Book

The Subroutines Reference series gives a systematic description of the
standard Prime subroutines and subroutine libraries. Each standard
subroutine library is a file containing subroutines that perform a
variety of related programming tasks. Whenever these tasks are to be
performed, programmers can use the subroutines in the standard
libraries instead of writing their own subroutines. Programmers need
to write subroutines only to perform specialized tasks for which no
standard subroutines exist.

OVERVIEW OF THIS SERIES

The Subroutines Reference consists of five volumes. A brief summary of
the contents of each volume follows.

Volume I

Volume I is an introduction to the entire Subroutines Reference series.
It describes the nature and functions of Prime's standard subroutines
and subroutine libraries. It explains how subroutines can be called
from programs written in Prime's programming languages: C, COBOL 74,
FORTRAN IV, FORTRAN 77, Pascal, PL/I, BASIC V/M, and PMA.

i x

Volume II

Volume II describes subroutines that deal with the access to and
management of file system entities, the manipulation of EPFs in the
execution environment, system search rules, and the use of a number of
command environment funct ions. Three chapters describe subrout ines
related to the file system, one chapter describes system search rules,
and one chapter each is devoted to subrout ines re lated to EPF
management and to the command environment.

Volume III

Volume III describes system subroutines. The subroutines covered in
this volume are the general system calls to the operating system and
standard system l ibrary. This excludes fi le and EPF manipulat ion,
which are described in Volume II. Volume III also includes System
Information and Metering (SIM) routines.

Volume IV

Volume IV presents several mature libraries: the Input/Output Control
S y s t e m (I O C S) l i b r a r i e s a n d o t h e r I / O - r e l a t e d s u b r o u t i n e s , t h e
Application libraries, the SORT libraries, and MATHLB.

IOCS provides device-independent I/O. The chapters on IOCS provide
d e s c r i p t i o n s o f t h e d e v i c e - i n d e p e n d e n t s u b r o u t i n e s p l u s t h o s e
dev i ce -dependen t sub rou t i nes s imp l i fied by IOCS. Ano the r sec t i on
provides descriptions of the synchronous and asynchronous device-driver
s u b r o u t i n e s .

Sect ions on the App l ica t ion L ib rary, the Sor t L ib rar ies , and the
F O R T R A N M a t r i x l i b r a r y p r o v i d e d e s c r i p t i o n s o f o t h e r p r o g r a m
development subroutines especially useful for FORTRAN programs.

Volume V

Volume V describes the event synchronization feature of PRIMOS (B) and
i t s u s e b y t w o P R I M O S f a c i l i t i e s : t i m e r s a n d t h e I n t e r S e r v e r
Communications (ISC) facility for message exchange between processes.
Volume V is divided into three parts.

Part 1 provides a general overview of event synchronization.

Par t 2 descr ibes in de ta i l how to c rea te , des t roy, and re t r ieve
in fo rmat ion abou t even t synchron ize rs and even t g roups . I t a l so
describes how timers and the ISC facility use event synchronizers and
event groups to synchronize user processes.

Part 3 describes in detail how to create, use, destroy, and retrieve
i n f o r m a t i o n a b o u t t i m e r s . T i m e r s m a k e t i m e - d e p e n d e n t p r o c e s s
synchron iza t ion poss ib le .

Part 4 describes in detail the ISC facility, which makes it possible
for processes that are running simultaneously to exchange messages.
These processes may be running on the same system or on two different
systems connected by PRIMENET. Message exchange is coordinated by
using event synchronizers.

SPECIFICS OF THIS VOLUME

Volume IV conta ins descr ip t ions of low- level l ibrar ies that prov ide
many useful routines. It has five parts:

I I n t r o d u c t i o n
II IOCS Library
III SMLC/AMLC Subroutines
IV App l i ca t i on L ib ra ry
V Sort Libraries and FORTRAN Matrix Library

Par t I cons is ts o f a s ing le chap te r tha t g ives an overv iew o f
subrout ines and l ibrar ies.

Chapter 1 summarizes the calling conventions for Prime subroutines and
explains the format of the subroutine descriptions in this volume. It
summarizes the parameter and returned-value data types used in the
descriptions. It explains how to set bits in arguments, how to use
keys , and how to in te rp re t e r ro r codes . I t d i scusses subrou t ine
libraries and addressing modes as an introduction to the Loading and
Linking Information section for each subroutine description.

Part II presents the IOCS (Input/Output Control System) Library, along
with other subroutines that perform I/O. Among these l ibraries, for
example, is a basic I/O procedure for accessing any peripheral device
(terminal, printer, tape, disk, card-reader). Most of the

x i

chores done by these subroutines are also done by the friendlier File
Management subroutines described in Volume II. Nevertheless, these
subroutines allow the programmer to be device-independent in performing
I /O. They a lso a l low the System Admin is t ra tor to change device
assignments by altering utility tables on the master disk.

Part III presents the SMLC/AMLC subroutines — subroutines used for
making assignments to the Synchronous Multiline Controller (s) and the
A s y n c h r o n o u s M u l t i l i n e C o n t r o l l e r (s) . A c c o m p a n y i n g c o n t r o l b l o c k
configurations are also described in this section.

Part IV presents the Application Library — both the R-mode APPLIB and
the V-mode VAPPLB. This mature user-oriented library provides a set of
service routines that are designed to perform as functions but may also
be called directly as subroutines. The seven categories of functions
each receive a chapter for description. For example, in the chapter on
String Manipulation Routines, you will find a function that converts an
ASCII string to a binary string and then returns a Boolean value to
indicate success or failure. Many of these functions were created to
overcome the l imited str ing manipulat ion capabi l i t ies of FTN; more
recen t l anguages o f ten have these func t i ons embedded i n t he i r
i n s t r u c t i o n s e t .

Part V presents the Sort Libraries and the FORTRAN Matrix Libraries.
Among these libraries, for example, is a subroutine to perform a bubble
sort, and another for a shell sort. Many of these subroutines are
better suited for system use. The programmer will often find the same
functions embedded in the high level programming language being used.

The appendixes provide information about error handling, error handling
f o r I / O s u b r o u t i n e s , S V C , o b s o l e t e s u b r o u t i n e s , a n d d a t a t y p e
e q u i v a l e n t s .

Three indexes enable the reader to find information quickly. These
are :

• The Index of Subroutines by Function, a list of subroutines grouped
by the general types of function that they perform. Use this index
to find out which subroutines perform a particular function, such
as controlling access to the file system.

• The Index of Subrout ines, an alphabet ical l is t of subrout ines
giving the volume, chapter, and page number of each subroutine.
Use this index to locate the description of a particular subroutine
in the Subroutines Reference.

• The Volume Index, a list of the topics treated in this volume. Use
this index to find out where in this volume a particular topic,
process, or term is described.

SUGGESTED REFERENCES

The PRIMOS User's Guide (DOC4130-5LA) contains information on system
use, directory structure, the condit ion mechanism, CPL files, ACLs,
global var iables, and how to load and execute files with external
s u b r o u t i n e s .

The Programmer's Guide to BIND and EPFs (DOC8691-1LA) shows application
programmers how to use the executable program format environment.

The Advanced Programmer's Guide, the companion to the Subroutines
Reference series, consists of four volumes:

Advanced Programmer's Guide, Volume 0: Introduction and Error Codes
(DOC10066-1LA)

Advanced Programmer's Guide, Volume I: BIND and EPFs
(DOC10055-1LA)

Advanced Programmer's Guide, Volume II: File System
(DOC10056-2LA)

Advanced Programmer's Guide, Volume III: Command Environment
(DOC10057-1LA)

These volumes provide strategies for the use of subroutines by system
programmers and application programmers. In addition to explanations
for each error code message, the manual provides the most complete
information on the use of EPFs, of file system subroutines, and of
command environments.

The following related Prime publications are also available.

Operator's Guide to System Commands (DOC9304-3LA)

System Administrator's Guide, Volume I: System Configuration
(DOC10131-1LA)

System Administrator's Guide, Volume II: Communication Lines and
Controllers (DOC10132-1LA)

System Administrator's Guide, Volume III: System Access and
Security (DOC10133-1LA)

System Architecture Reference Guide (DOC9473-2LA)

x m

PRIME DOCUMENTATION CONVENTIONS

Subroutine descriptions use the conventions shown below,
illustrate use of these conventions.

Examples

Convent ion

UPPERCASE

Exp lana t i on

In subroutine descript ions,
words in uppercase indicate
actual names of commands,
options, statements, data
types, and keywords.

Example

FIXED BIN

lowercase In subroutine descript ions,
words in lowercase indicate
variables for which you must
substitute a suitable value.

key, fi lename

P a r e n t h e s e s I n c a l l s t a t e m e n t s ,
() p a r e n t h e s e s m u s t b e

entered exactly as shown

CALL TIMDAT(array, n)

Note

FORTRAN requires a colon (:) to indicate that octal notation
f o l l o w s .

Changes made to these pages since the last printing are identified by
vertical bars in the margins. Each new routine in this package is
marked with a bar beside the rout ine name, at the descr ipt ion's
heading.

x i v

r P A R T I

INTRODUCTION

r

r
r

Overview of
Subroutines

A subroutine is a module of code that can be called from another
module. It is useful for performing operations that cannot be
performed by the call ing language, or for performing standard
operations faster. Users can write their own subroutines to supply
customized or repetitive operations. However, this guide discusses
only standard subroutines provided with the PRIMOS® operating system
or in standard libraries.

This chapter summarizes the calling conventions for Prime subroutines
and explains the format of the subroutine descriptions in this volume.
It assumes that readers know a high-level language or Prime Macro
Assembler (PMA), and that they are familiar with the concept of
external subroutines. For more information on calling subroutines from
Prime languages, see the chapter on your own language in Volume I.

FUNCTIONS AND SUBROUTINES

In this guide, a function is a call that returns a value. You call a
function by using it in an expression; the function's returned value
can then be assigned to a variable or used in other operations within
the expression. Here, the value returned by DELE$A is assigned to the
variable VALUE1:

VALUE1 = DELE$A(argl, arg2);

1 - 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

A subroutine returns values only through its arguments. It is called
this way:

CALL GV$GET(argl, arg2, arg3, arg4);

However, the word subroutine is also used as the collective term for
both of these modules.

SUBROUTINE DESCRIPTIONS

In this guide, each description of a subroutine contains the following
sect ions:

• Purpose. A brief description of what the subroutine does.

• Usage. The format of a subroutine declaration and a subroutine
call, using either PL/I language elements (for subroutines in
V-mode, etc.) or FORTRAN language elements (for subroutines
solely in R-mode) . For more information, see the section
SUBROUTINE USAGE later in this chapter.

Note

Certain subroutines in this volume are designed to aid
the FORTRAN programmer in particular. Even though they
exist in modes other than R-mode, they receive FORTRAN
language elements in their Usage.

• Parameters. Information about the arguments the subroutine
expects and the values it returns. For further information, see
the section SUBROUTINE PARAMETERS later in this chapter.

• Discussion. Additional information about the subroutine and
examples of its use. Not all subroutine descriptions have this
sect ion.

• Loading and Linking Information. Information about what
libraries must be loaded during the linking and loading process.
See the section Libraries and Addressing Modes later in this
chapter for a brief discussion of modes.

Figure 1-1 shows an example of a subroutine description. The
subroutine CTIM$A is in chapter 12 of this volume. Like the other
subroutines in the Application libraries, CTIM$A is most suitably used
in its function form.

F i r s t E d i t i o n 1 - 2

OVERVIEW OF SUBROUTINES

CTIM$A

Purpose

CTIM$A is a
since login,
the cputim a

double precision function that returns
in seconds as the function value, and

rgument.

CPU time elapsed
as centiseconds in

Usage

INTEGER*4 cputim
R E A L * 8 r t _ v a l

r t _ v a l

CALL

= CTIM$A(cputim)
(or)

CTIM$A(cputim)

Parameters

cput im

OUTPUT. CPU time in centiseconds

Discussion

The function value will be CPU time elapsed
This value may be received as REAL*8.

since login, i n seconds.

Loading and Linking Information

APPLIB
NVAPPLB —
VAPPLB

R-mode
V-mode
V-mode (unshared)

A Subroutine Description
Figure 1-1

1-3 First Edition

SUBROUTINES, VOLUME IV

SUBROUTINE USAGE

The Usage section of each subroutine description includes two items of
in format ion:

1. How to declare the subroutine in a program.

2. How to invoke it in a program.

The notation used is that of either the PL/I language or the FORTRAN
language. If you do not use these languages, the explanation of the
relevant syntax and data types descriptions in this section and the
SUBROUTINE PARAMETERS section should enable you to call these
subroutines from other languages. For further information see the
chapter in Volume I that describes your language interface.

Subroutine Declarations with PL/I Elements

The following example shows a subroutine declaration in PL/I

DCL CNIN$ ENTRY(CHARACTER(*), FIXED BIN, FIXED BIN);

DCL is the short form of DECLARE. The DECLARE statement is used to
declare all data types, including subroutines and functions. CNIN$ is
the subroutine name. ENTRY specifies that the item being declared is a
subprogram.

The items in parentheses are the parameters of the subroutine.

Subroutine Calls with PL/I Elements

The following example shows a call to the subroutine declared above

CALL CNIN$(buffer, char_count, actual_count);

PL/I does not distinguish between uppercase and lowercase characters.
In the Usage section of a subroutine description, lower case letters
indicate the items that must be supplied by the user, both arguments
(actual parameters, as opposed to formal parameters) and data items.
These are described more fully in the Parameters section.

F i r s t E d i t i o n 1 - 4

OVERVIEW OF SUBROUTINES

The CALL statement above invokes the subroutine CNIN$. The arguments
in parentheses correspond to the parameters in the subroutine
declaration. The variables or constants used as arguments in a call to
the subroutine must match the data types of the parameters in the
declaration. Here, the variable buffer must be a character string,
while char__count and actual_count must be integers. A subroutine that
has no parameters is invoked simply by giving the CALL keyword and the
name of the subroutine:

CALL TONL;

Subroutine Declarations and Calls with FORTRAN Elements

The FORTRAN language requires uppercase. It does not use a DCL line
for subroutines. It requires declaration of the data types for those
variables to be passed in a subroutine, without any additional sizing
of parameters as for PL/I. Variable declarations are given at the
beginning of the program, indented eight spaces — as are all
statements (except comment lines, which are marked by a "C", flush
left). Variables given here are formal variables; you may choose your
own names. The example for the subroutine CNIN$ now takes this form
for FORTRAN:

INTEGER*2 CH_CNT
C FTN requires uppercase and expects variables of 6 characters
C or less; thus CH_CNT instead of char_count as given in PL/I

INTEGER*2 BUFFER(1)
C The (1) suggests an array; you must substitute a value size
C practical for your application, for example BUFFER(80)

INTEGER*2 AC_CNT
C (Later, after you assign CH_CNT a value):...

CALL CNIN$(BUFFER, CH_CNT, AC_CNT)

Function Declarations with PL/I Elements

The following example shows a function declaration in PL/I:

DCL PWCHK$ ENTRY(FIXED BIN, CHAR(*) VAR) RETURNS(BIT(1));

The only difference between a function and a subroutine declaration is
at the end of the DECLARE statement. The function declaration contains
the keyword RETURNS, followed by a returns descriptor specifying the
data type of the value returned by the function. In this case, it is a
logical (Boolean) value.

1 - 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

Function Calls with PL/I Elements

A function is invoked when its name is used as an expression on the
right-hand side of an assignment statement. The following example
shows an invocation of the function declared above:

password_ok = PWCHK$(key, password);

The equal sign = is the assignment operator, password—ok is a logical
(Boolean) variable that is assigned the value returned by the call to
PWCHK$. key and password represent integer and character-string
values, respectively.

Functions Without Parameters: A function that has no parameters is
invoked with an empty argument list. The DATE$ subroutine is declared
as follows:

DCL DATE$ ENTRY RETURNS(FIXED BIN(31));

Its invocation looks like this:

fs_date = DATE$() ;

Note

Functions called from FTN programs require parameters.

Function Declarations/Calls with FORTRAN Elements

FORTRAN has no DCL line to declare a function. An extra variable must
be declared for a function — the variable that is to hold the value
returned by the function. Otherwise, preparation for a function call
is exactly as for a subroutine call.

A note of warning: certain functions in this volume return FORTRAN
logical values, sized to INTEGER*2 (a 16-bit halfword) instead of a
single bit, as for PL/I. These functions are designed mainly as tools
for FORTRAN programs. See the Application Library (chapters 9 - 16)
for examples. Other languages may use them, but they must adjust the
size of their returned logical value to the size of a halfword, instead
of a (more-typical) single bit.

F i r s t E d i t i o n 1 - 6

OVERVIEW OF SUBROUTINES

The subroutine call in FORTRAN uses the same form as in PL/I. The
following example shows the declaration and call of RSTR$A, a FORTRAN
logical function in chapter 10 of this volume:

INTEGER*2 STRING(1)
(a string of characters to be rotated)

INTEGER*2 LENGTH, COUNT
(LENGTH of string and COUNT of positions to rotate)

LOGICAL LOG
(To hold the LOGical value returned by the function)

LOG = RSTR$A(STRING, LENGTH, COUNT)

SUBROUTINE PARAMETERS

Subroutines usually expect one or more arguments from the calling
program. These arguments must be of the data type specified in the
parameter list of the DECLARE statement, and must be passed in the
order expected. All standard Prime subroutines are written in FORTRAN,
PMA, or a system version of PL/I. Volume I discusses how to translate
the data types expected by these languages into other Prime languages.
A chart summarizing data type equivalents for all Prime languages is in
Appendix F.

You must provide the number of arguments expected by the subroutine.
If too few arguments are passed, execution causes an error message such
as POINTER FAULT or ILLEGAL SEGNO. If too many arguments are passed,
the subroutine ignores the extra arguments, but will probably perform
incorrectly. A small number of subroutines/ such as IOA$, accept
varying numbers of arguments.

The Usage section of a subroutine description gives the data types of
the parameters. The Parameters section explains what information these
parameters contain and what they are used for. Each parameter
description in this section begins with a word in uppercase that
indicates whether the parameter is used for input or output:

• INPUT means that the parameter is used only for input, and that
its value is not changed by the subroutine.

• OUTPUT means that the parameter is used only for output. You do
not have to initialize it before you call the subroutine.

• INPUT/OUTPUT means that the parameter is used for both input and
output. The argument you pass to it is changed by the
subrout ine.

You will note that a returned value from a function call receives no
description in the Parameters section, since it is not truly a
parameter of the subroutine. However, the Usage section defines the
data type of the returned value.

1 - 7 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

Parameter and Returned-Value Data Types with PL/I

A PL/I parameter specification consists simply of a list of the data
types of the parameters. The data types you will encounter, both in
the parameter list and in the RETURNS part of a function declaration,
are the following:

CHAR(n)

CHAR(*)

CHAR(n) VAR

CHAR(*) VAR

FIXED BIN

FIXED BIN(31)

(n) FIXED BIN

FLOAT BIN

FLOAT BIN(47)

B IT (l)

BIT(n)

Also specified as CHARACTER(n), CHARACTER(n)
NONVARYING. Specifies a character string or array
of length n. A CHAR(n) string is stored as a
byte-aligned string, one character per byte. (A
byte is 8 bits.)

Also CHARACTER(*) , CHARACTER(*) NONVARYING.
Specifies a character string or array whose length
is unknown at the time of declaration. A CHAR(n)
string is stored as a byte-aligned string, one
character per byte.

Also CHARACTER(n) VARYING. Specifies a character
string or array whose length can be a maximum of n
characters. The first 2 bytes (one halfword) of
storage for a CHAR(n) VAR string contain an integer
that spec ifies the s t r ing length ; these are
followed by the string, one character per byte.

Also CHARACTER(*) VARYING. Specifies a character
string or array whose length is unknown at the time
of declaration. The first 2 bytes (one halfword)
of storage for a CHAR(*) VAR string contain an
integer that specifies the string length; these
are followed by the string, one character per byte.

Also FIXED BINARY, BIN, FIXED BIN(15). Specifies a
16-bit (halfword) signed integer.

Specifies a 32-bit signed integer.

An integer array of n elements. See below for more
information about arrays.

Also FLOAT BIN(23), FLOAT. Specifies a 32-bit
(one-word) floating-point number.

Specifies a 64-bi t (double-word) float ing-point
number.

Specifies a logical (Boolean) value. A bit value
of 1 means TRUE; a value of 0 means FALSE.

Specifies a bit string of length n. BIT(n) ALIGNED
means that the bit string is to be aligned on a
halfword boundary.

First Edition l - l

OVERVIEW OF SUBROUTINES

P O I N T E R A l s o P T R . S p e c i fi e s a P O I N T E R d a t a t y p e . A
pointer is stored in three halfwords (48 bits). If
t he po in te r w i l l po in t on l y t o ha l fwo rd -a l i gned
data, it may occupy two halfwords (32 bits). The
item to which the pointer points is declared with
the BASED attribute (for instance, BASED FIXED
BIN) .

POINTER OPTIONS (SHORT)
Same as POINTER except that it always occupies only
t w o h a l f w o r d s a n d c a n o n l y p o i n t t o
ha l fword-a l igned data.

Note

When used as a parameter, POINTER can be
used interchangeably with POINTER OPTIONS
(SHORT).

When used as a returned function value,
POINTER OPTIONS (SHORT) can be used in any
high-level language except Pascal or 64V
mode C, which require returned pointers to
b e t h r e e h a l f w o r d s ; i n t h e s e c a s e s ,
POINTER must be used. C in 32IX mode
accepts only hal fword-al igned, two-halfword
pointers, and therefore requires the use of
POINTER OPTIONS (SHORT).

Sometimes an argument is defined as an array or a structure. An array
declarat ion looks l ike th is :

DCL ITEMS(10) FIXED BIN;

Here, ITEMS is a ten-element array of integers. The keywords FIXED
BIN, however, can be replaced by any data type. By default, arrays are
indexed starting with the subscript 1; the first integer in this array
is ITEMS (1) .

An array with a starting subscript other than 1 is declared with a
range spec i fica t i on :

DCL WORD(0:1023) BASED FIXED BIN;

WORD is an array indexed from 0 to 1023, and its elements are
referenced by POINTER variables.

A structure is equivalent to a record in COBOL or Pascal. A structure
declarat ion looks l ike th is :

1 - 9 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

DCL 1 FS_DATE,
2 YEAR BIT(7),
2 MONTH BIT(4),
2 DAY BIT(5),
2 QUADSECONDS FIXED BIN(15);

The numbers 1 and 2 indicate the relative level numbers of the items in
the structure. The name of the structure itself is always declared at
level 1. The level number is followed by the name of the data item and
its data type. In this example, the structure occupies a total of 32
bits. (Remember that a FIXED BIN(15) value occupies 16 bits of
storage.)

Since no names are given to data items in parameter lists, the array
declared above as ITEMS would be declared simply as (10) FIXED BIN.
Similarly, the structure FS_DATE would be listed as

(..., 1, 2 BIT (7), 2 BIT(4), 2 BIT(5), 2 FIXED BIN(15),

Data Types For FORTRAN

The Usage sections with FORTRAN employ FTN (not F77) elements
data types you will encounter there are the following:

The

COMPLEX Specifies a 64-bit element to hold a complex
number, defined as two 32-bit (REAL*4) entities,
the first for its real and the second for its
imaginary part.

INTEGER*2

INTEGER*4

Also INTEGER. Specifies a 16-bit (halfword) signed
integer. Bit 1 = sign bit.

Specifies a 32-bit signed integer. Bit 1 = sign
b i t .

LOGICAL Specifies a logical (Boolean) value. Within a
16-bit halfword: the first 15 bits must be 0, the
16th bit indicates .FALSE. with 0 and .TRUE. with
1.

REAL*4

REAL*8

A l s o R E A L . S p e c i fi e s a 3 2 - b i t s i g n e d
floating-point number. Bit 1 = sign bit. Bits
2-24 = mantissa. Bits 25-32 = exponent.

Also DOUBLE PRECISION. Specifies a 64-bit signed
floating-point number. Bit 1 = sign bit. Bits
2-48 = mantissa. Bits 49-64 = exponent.

First Edition 1-10

OVERVIEW OF SUBROUTINES

Data Type Variants For FORTRAN

Other declarations in the Usage section suggest the elements for which
FTN has no data type:

BUFFER(1) Given the data type of INTEGER*2, this shorthand
declaration for an array suggests a character
string or array whose length is unknown at the time
of declaration (an equivalent to CHAR(*) in PL/I).
The user must DIMENSION the array with an adequate
size. If the size is known to be (n), then the
variable declaration is given as BUFFER(n).

LOC(variable) Specifies the equivalent of a POINTER data type.
This bui l t - in FORTRAN funct ion automat ical ly
provides the prerequisite three halfwords (48 bits)
for the pointer.

Optional Parameters

On Prime computers, some subroutines and functions are designed so that
one or more of their parameters, input or output, can be omitted.
Candidates for omission are always the last n parameters. Thus, if a
subroutine has a full complement of three parameters, it may be
designed so that the last one or the last two can be omitted; the
subroutine cannot be designed so that only the second parameter can be
omitted. The first parameter can never be omitted.

In the Usage section of a subroutine description, any optional
parameters are enclosed in square brackets, as in the following
declaration and CALL statement:

DCL CH$FX1 ENTRY (CHAR (*) VAR, FIXED BIN (15)
[, FIXED BIN (15)]);

CALL CH$FX1 (string_to_convert, result
[, nonstandard_code]);

In some cases, parameters can be omitted because they are not needed
under the circumstances of the particular call. In other cases, when
the parameter is of type INPUT, the subroutine will detect the missing
parameter and will assume some value for it. For example, C1IN$,
described in Volume III, Chapter 3, can be called with one, two or
three arguments:

CALL C1IN$ (char);
CALL C1IN$ (char, echo_flag);
CALL C1IN$ (char, echo_flag, term_flag);

1-11 First Edition

SUBROUTINES, VOLUME IV

If echo_flag is missing, the subroutine acts as if it had been supplied
with a value of "true". If term_flag is missing, the subroutine acts
as if it had been supplied with a value of "false".

In still other cases, the subroutine changes its behavior depending on
the presence of the parameter. For example, the subroutine CH$FX1
(described in Volume III, Chapter 6), whose Usage section is shown
above, uses its third argument to return an error code. If the code
argument is omitted and an error occurs, the routine signals a
condition instead.

Most of the routines in the Subroutines Reference Guide have no
optional parameters.

Optional Returned Values

In the architecture of Prime computers, a subroutine that was designed
as a function can be called as a subroutine using the CALL statement.
Frequently this makes no sense. The statement

CALL SIN(45);

does nothing useful; the value that the SIN function returns is lost.
But, with functions that change some of their parameters as well as
return a value, the returned value can be useful in some contexts and
not of interest in other contexts. Consider CL$GET, described in
Volume III, Chapter 3 of the Subroutines Reference Guide. It is a
function that reads a line from the command device and, in addition,
returns a flag that indicates whether a command input file is active.
Most programs do not need to know whether a command input file is
active. They would call CL$GET as a subroutine:

CALL CL$GET (BUFFER, 80, CODE);

A program that was interested in command input files, however, would
call CL$GET as a function:

COMISW = CL$GET (BUFFER, 80, CODE);

Note

In PL/I and Pascal, a given subroutine may not be used both as
a subroutine and as a function within a single source module.

The Usage section of the subroutine descriptions gives both the

F i r s t E d i t i o n 1 - 1 2

OVERVIEW OF SUBROUTINES

funct ion invocat ion and the subrout ine invocat ion
subroutines that are likely to be called in both ways.

f o r

How to Set Bits in Arguments

Sometimes a subroutine expects an argument that consists of a number of
bits that must be set on or off.

A data item is stored in a computer as a collection of bits, which can
each have one of two values, off or on. On Prime computers, off is
arbitrarily equated to 0 or false, and on is equated to 1 or true.
(This is not the same as the FORTRAN values .FALSE, and .TRUE., which
are the logical data type.) When bits are stored as part of a group,
the position of the bit gives it another value in addition to 1 or 0.
Its position equates it to a power of 2. Consider an argument that
contained only two bits, represented in Figure 1-2.

Bit 1 Bit 2

2**1 2**0

Values of Bit Positions — Two Bits
Figure 1-2

The low-order bit would be in the position of 2 to the 0 power, and its
value, if ON, would be 1. The high-order bit would be in the position
of 2 to the first power, and its value, if ON, would be 2. (If OFF,
the value of a bit is always 0.) By convention, the low-order bit is
called the rightmost bit and the high-order bit is called the leftmost
b i t .

In an argument containing 16 bits, choose the bits that you want to set
ON, compute their value by position, and add these values. The
resulting decimal value is what you should assign to the subroutine
argument for the options you want. You can pass an integer as an
argument that is declared as BIT(n) ALIGNED. The subroutine interprets
the integer as a bit string. For example, if you want to set the
sixteenth and the seventh bit, compute 2 to the 0 power plus 2 to the
ninth power, which amounts to 1 plus 512, or 513. Figure 1-3
illustrates values of bit positions in a 16-bit argument.

1-13 First Edition

SUBROUTINES, VOLUME IV

Bit 1 Bit 7 Bit 16

2 * * 1 5 2 * * 9 2 * * 0

Values of Bits in a 16-bit Argument
Figure 1-3

Key Names as Arguments

In calls to many subroutines, data names known as keys can be used to
represent numeric arguments. The subroutine description explains which
key to use. Numeric values are associated with these keys in the UFD
named SYSCOM. The keys in SYSCOM are listed in Volume I. Each
language has its own files of keys. The chapters on individual
languages in Volume I explain how to insert these files into your
program.

Keys are of the form x$yyyy, where x is either K or A and yyyy is any
combination of letters. Keys that begin with K concern the file
system; those that begin with A concern applications library routines;
those that begin with E are error codes. Examples are:

K$CURR
A$DEC

For example, in the subroutine call

CALL GPATH$ (K$UNIT other arguments...);

the key K$UNIT represents the value 1.

For more information about keys, see Volume I.

Standard Error Codes

Many subroutines include as an argument a standard error code, which is
similar to a key. The error code corresponds to an error message that
the subroutine can return to indicate that the call to the subroutine
succeeded or failed, or to report some other condition worth noting.

First Edition 1-14

OVERVIEW OF SUBROUTINES

Standard error codes are of the form E__x___x, where xxxx is any
combination of letters. For example, the error code

E$DVIU

corresponds to the error message Device in Use.

The standard error codes are defined in the UFD named SYSCOM. Like a
key file, the error code file for a particular language must be
inserted in the program that calls the subroutine. Appendix A in this
volume gives an overview of the standard error codes plus a pathname to
the online list. A copy of the listing, current for Revision 20.2 of
Primos, is given in Volume I. For an explanation of each standard
error code, see Volume 0 of the Advanced Programmer's Guide.

Libraries and Addressing Modes

The Subroutines Reference Guide is organized to give a systematic
description of subroutine libraries — sets of routines, all broadly
dealing with the same subject, grouped together into one file. There
is a separate library for each of these subjects.

Prime computers offer several addressing modes to provide software
compatibility to the user. (For a discussion of addressing modes, see
the System Arch i tec ture Reference Guide.) To main ta in th is
compatibility, a given subroutine library will normally exist in three
general versions: R-mode, V-mode, and V-mode (unshared). (See Volume
I for a discussion of shared and unshared libraries.)

A program is compiled in one of the segmented modes (V-mode or I-mode)
or in the older R-mode. If the program is compiled in one of the
segmented modes, it may call library routines written in any of the
segmented modes. A single set of libraries is provided for all three
modes. If the program is compiled in either V-mode or I-mode, it
requires a V-mode version of a library (which services both V-mode and
I-mode programs). If the program is compiled in R-mode, the program
must use the R-mode version of that library.

Every routine description contains a section entitled Loading and
Linking Information. It specifies the name of the library to use for
that subroutine, depending upon the compilation mode of your program.
During your BIND, SEG, or LOAD Session, you satisfy the subroutine
references by providing a LI (for Library) command followed by the name
of the library (in the appropriate mode) holding your subroutine(s).
Several LI commands may be necessary. A final "LI", without a library
specified thereafter, provides the system libraries that complete the
linking or loading session. See Volume I for further information.

1 - 1 5 F i r s t E d i t i o n

PART II

IOCS LIBRARY

r

Introduction
to IOCS

ORGANIZATION OF PART II

IOCS (the Input/Output Control System) is a group of subroutines that
per fo rm inpu t /ou tpu t be tween the Pr ime compute r and the d isks ,
terminals, and other peripheral devices on the system.

These subroutines are very powerful, but you are urged to use the file
system subroutines described in Volume II for your file I/O operations.

While these IOCS routines certainly can do the job, IOCS allows a
maximum of 127 default PRIMOS file units per user, and each of these is
ass i gned t o a l og i ca l un i t f r om 1 t o 141 . To make fi l e un i t
assignments greater than 127, you must map each to a logical unit
within the range 1-141, using a call to ATTDEV. But that is your
l imi t . I f you are us ing EPFs that a l low suspended processes at
multiple command levels, you may accidentally run out of Primos file
units or FORTRAN logical units. On the other hand, the file system
subroutines in Volume II do not require logical units. Furthermore,
they draw on a pool of 327 61 PRIMOS file units per user, and the system
dynamically allocates and frees them for you.

If you need to exercise the control that IOCS gives you, then have a
careful strategy for file unit al location, knowing that only the first
127 file units are handled by default. Use calls to IOCS$F and IOCS$G
to obtain a logical unit (within the range 1-141) . Finally, use a call
to ATTDEV to map that logical unit to an available file unit.

2 - 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

Generally, IOCS subroutines can be grouped into three levels

Level 1 Device-independent drivers are routines that read
and write ASCII or binary data and perform control
functions such as opening a file.

Level 2 Device-dependent drivers issue the correct format
for a particular device, but allow the data to be
read later by device-independent drivers.

Level 3 The lowest level of IOCS functions are routines that
perform raw data transfers.

The chapters in Part II are organized in the following manner

Chapter 2 Device, unit, and argument definitions and tables
for use with following chapters

Chapter 3 Changing device assignments

Chapter 4 Device-independent driver subroutines (which call
the device-dependent routines in the following
chapters, depending on the device specified)

Chapter 5 Disk (non-file system) subroutines

Chapter 6 Subroutines for the user terminal and paper tape
(Many subroutines may be used for both peripherals.)

Chapter 7 Subroutines for other peripheral devices (printers,
plotters, card processors, and magnetic tape)

The level-1 device drivers are presented in Chapter 4. Routines of
levels 2 and 3 are grouped in the following chapters by device type
rather than by level of the subroutine.

Table 2-1 shows the majority of IOCS routines discussed in Chapter 4
t h r o u g h C h a p t e r 7 . I t s h o w s t h e r e l a t i o n s h i p o f l e v e l - 1
(device-independent) drivers to the others. Each column of this table
represents an I/O function, and each row a certain physical device.
All drivers in a single column are designed to be compatible in
internal data format.

Tables 2-2 and 2-3 show the physical and logical device assignments,
for use in changing device assignments as discussed in Chapter 3.

Figure 2-1 shows all the device-dependent drivers supported by Prime.

F i r s t E d i t i o n 2 - 2

INTRODUCTION TO IOCSr
r

Table 2-1

Device-dependent Driver Selected by
Each Independent Driver According to Device

Device-Independent Drivers

RDASC W R A S C R D B I N W R B I N CONTRL

Device Dependent Drivers

User terminal I$AA01(6)* O$AA01(l) I$BA01(2) O$BA01(2) C$A01(2)

Input command
stream I$AA12(1)

Paper-tape
reader I$AP02(5) I$BP02(2) C$P02(5)

Paper-tape punch O $ A P 0 2 (5) O $ B P 0 2 (2)

MPC card reader I$AC03(3) O$AC03(3)

Serial line
p r in te r

9-track mag.
tape

MPC line printer

PRIMOS file
system

(compressed)

PRIMOS file
system

(uncompressed)

Serial card
reader

7-track mag.
tape

7-track mag.
tape

(BCD)

9-track mag.
tape

(EBCDIC)

Versatec
p r i n t e r /
p l o t t e r

MPC card
processor

O$AL04(3)

I$AM05(4) O$AM05(4) I$BM05(7) O$BM05(7) C$M05(4)

O$AL0 6(4)

I$AD07(1) O$AD07(l) I$BD07 (1) O$BD07 (1) SEARCH(1)

I$AD07(1) O$AD08(l) I$BD07(1) O$BD07(l) SEARCH(1)

I$AC09(3)

I$AM10(4) O$AM10(4) I$BM10(7) O$BM10(7) C$M10(4)

I$AM11(7) 0$AM11(7)

I$AM13(7) 0$AM13(7)

0$AL14(3)

I$AC15(3) 0$AC15(3)

* Numbers in parentheses refer to the following notes.

C$M11(7)

C$M13(7)

2 - 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

Notes to Table 2-1

1. Available in R-mode and V-mode. Listed in CONIOC (Chapter 3) and
may be called directly or via the device-independent drivers.

2. Available in R-mode only. Listed in CONIOC (Chapter 3) and may be
called directly or via the device-independent drivers.

3. Available in R-mode only. Listed in FULCON but not CONIOC
(Chapter 3). May not be called via the device-independent
drivers, unless FULCON is assembled and loaded before the library
is loaded.

4. Available in R-mode and V-mode. Listed in FULCON (Chapter 3). In
V-mode programs, these routines may be called directly or via the
device-independent drivers if the default FORTRAN library (PFTNLB)
is loaded. If the R-mode or the nonshared V-mode library
(NPFTNLB) is loaded, the routine may not be called via the
device-independent drivers unless FULCON is assembled and loaded
before the library is loaded. See Chapter 3 for a more complete
discussion of IOCS table usage. Routine may be called by name
without specific procedures.

5. Available in R-mode and V-mode. For R-mode, routine is listed in
CONIOC (Chapter 3) and may be called directly or via the
device-independent drivers. For V-mode, routine is listed in
FULCON (Chapter 3) and may be used in same manner as R-mode as
long as the default FORTRAN library (PFTNLB) is loaded. In
R-mode, or V-mode when the nonshared FORTRAN library (NPFTNLB) is
loaded, the routine may not be called via the device-independent
drivers unless FULCON is assembled and loaded before the library
is loaded. See Chapter 3 for a more complete discussion of IOCS
table usage.

6. Available in R-mode and V-mode, but is not in CONIOC (Chapter 3)
or FULCON. To call the routines via the device-independent
drivers, the appropriate table must be modified, assembled, and
loaded before the library is loaded. (See Chapter 3.) The
routine may be called specifically without any special procedures.

7. Available in R-mode and V-mode. V-mode is listed in FULCON but
not in CONIOC (Chapter 3). R-mode is not in CONIOC or FULCON. In
V-mode, if the nonshared FORTRAN library (NPFTNLB) is loaded, the
routine may not be called via the device- independent drivers
unless FULCON is assembled and loaded before the library is
loaded. In R-mode, the appropriate table must be modified,
assembled, and loaded before the library is loaded. In both
modes, the routine may be called specifically without any special
procedures.

F i r s t E d i t i o n 2 - 4

INTRODUCTION TO IOCS

Table 2-2
Physical Device Numbers

Physical Device Device Description

1 User terminal
2 Paper-tape reader or punch
3 MPC card reader
4 Serial line printer
5 9-track magnetic tape ASCII/BINARY
6 MPC line printer
7 PRIMOS file system (compressed ASCII)
8 PRIMOS file system (uncompressed ASCII)
9 Serial card reader

10 7-track magnetic tape ASCII/BINARY
11 7-track magnetic tape BCD
12 (User terminal/command file) command input
13 9-track magnetic tape EBCDIC
14 Versatec Printer/Plotter

2 - 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

Table 2-3
Logical Devices, Physical Devices, and File Units

FORTRAN Default
Logical Unit Number Physicail Device or Unit

1 User terminal
2 Paper-tape reader■ or punch
3 MPC card reader
4 S e r i a l l i n e p r i n t er (system option

controller or SOC)
5 PRIMOS fi l e u n i t
6 PRIMOS fi l e u n i t
7 PRIMOS fi l e u n i t
8 PRIMOS fi l e u n i t
9 PRIMOS fi l e u n i t

10 PRIMOS fi l e u n i t
11 PRIMOS fi l e u n i t
12 PRIMOS fi l e u n i t
13 PRIMOS fi l e u n i t
14 PRIMOS fi l e u n i t 10
15 PRIMOS fi l e u n i t 11
16 PRIMOS fi l e u n i t 12
17 PRIMOS fi l e u n i t 13
18 PRIMOS fi l e u n i t 14
19 PRIMOS fi l e u n i t 15
20 PRIMOS fi l e u n i t 16
21 9-track magnetic tape unit 0
22 9-track magnetic tape unit 1
23 9-track magnetic tape unit 2
24 9-track magnetic tape unit 3
25 7-track magnetic t a p e unit 0
26 7-track magnetic t a p e unit 1
27 7-track magnetic t a p e unit 2
28 7-track magnetic t a p e unit 3
29 PRIMOS fi l e u n i t 17
30 PRIMOS fi l e u n i t 18
31 PRIMOS fi l e u n i t 19

139 PRIMOS fi l e u n i t 127
140 MPC printer
141 MPC printer

First Edition 2-6

INTRODUCTION TO IOCS

Notes to Table 2-3

All IOCS routines use the Logical Unit Number Table. All Logical Unit
Numbers therefore must fall within the range 1-141. Note also that
these Logical Unit Numbers supply default mapping values for Primos
Physical File Units in the range 1-127.

With Revision 19.4 the full range for Primos Physical Unit numbers
(1-127 per user) was expanded to cover 1-32761. However, there has
been no change in default mapping of Physical Units to Logical Units.

There is no default mapping of Primos Units to Logical Units where the
Primos Unit is 128 or larger.

If a Primos Unit greater than 127 is used, and the user wishes to use
IOCS subroutines, a call to ATTDEV must be made to explicitly map this
Physical Unit to an available Logical Unit (within the range of 1-141).

2 - 7 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

PRIMOS
FILE SYSTEM

SERIAL
(CENTRONICS)

PARALLEL
LINE PRINTERS VERSATEC

(M P C) P R I N T E R / P L O T T E R

l$AD07 (ASCII) 1$BP07 (BINARY)

0$xDxx

O$AD07
(ASCII COMPRESSED)

O$AD08
(ASCII FIXED LENGTH RECORDS)

O$BD07
(BINARY)

COMMAND FILE

SERIAL '
i

l$AA12

CARD READERS

PARALLEL
(MPC)

SERIAL

READER
PUNCH

l$AC03

ISAC09

MAGNETIC TAPES

O$AM05

USER
MEMORY

l$AP02/l$BP02

O$AP02/O$BP02

O$AA01

n n

l$AM05

0$AM13

C$M05

l$AM13

O$AM10

C$M13

l$AM10

0$AM11

C$M10

l$AM11
C$M11

9-TRACK
EBCDIC

7-TRACK
ASCII

7-TRACK
BCD

x$AMxx
TRANSFER ASCII DATA

x$BMxx
TRANSFER BINARY DATA

O$BA01
l$BA01

l$AA01

C$A01

ASR
READER/PUNCH

Transfer of Data to and from High-speed User Memory
Figure 2-1

First Edition 2-8

INTRODUCTION TO IOCS

PARAMETERS USED FOR IOCS SUBROUTINES

The following parameter names are used throughout Part III. The IOCS
subroutines were first developed with FTN programmers in mind;
therefore data types here receive FORTRAN descriptions. However, other
languages (especially PL/I) may also call these subroutines, with
certain restrictions. For example, refer to altrtn below. Therefore,
the individual subroutines are given data descriptions in a PL/I
format.

a l t r t n An INTEGER*2 assigned the value of a numeric label
in the user's FORTRAN program, to be used as an
alternate return from the subroutine in case of
error. The label number should be preceded by a
$. FORTRAN calls may omit the argument or give it
the value of 0 if no alternate return is wanted.
Programs in PL/I may also use the (fixed bin(15))
altrtn; since such programs are in V-Mode, users
must consider the caution below. Other calling
languages should omit the argument (not use 0).

Note

If in V-Mode, the altrtn label must be in the same stack frame
as the code that made the call.

b u f f e r The name of a data area to or from which data is
moved (INTEGER*2 array in FTN or char array in
P L / I) .

count The number of halfwords to be transferred, or the
length of a buffer or filename (INTEGER*2 or fixed
b in (15)) .

bu f fe r_s ize The record size associated with the logical unit.
Must be as large as the maximum record size,
measured in 16-bit halfwords (INTEGER*2 or fixed
bin(15)) .

logical_device

logical] unit

Same as logical_unit below. (INTEGER*2 or fixed
b in (15)) .

The FORTRAN logical unit (see Table 2-3). Must be
between 1-141 inclusive. (INTEGER*2 or fixed
b in (15)) .

name A filename, also called name(l) to suggest a FTN
array. (INTEGER*2 or char(*)).

2-9 First Edition

SUBROUTINES, VOLUME IV

physical_device The position in the device-type table (see Table
2-2). A physical device is a device type such as
magnetic tape or a user terminal. (INTEGER*2 or
fixed bin(15)).

physical_unit The sub-unit number of a physical device having
more than one unit (see Table 2-3). A physical
unit designation distinguishes among the units of
a physical device that has multiple units, such as
a magnetic tape controller. For disk (the file
system), the physical unit corresponds to the file
unit (below). If the device has only one unit,
i t s s u b - u n i t n u m b e r i s 1 . I f i t i s a
mult iple-unit device such as disk or tape,
sub-units 1 through 8 may be specified. (On disk,
a sub-unit is actually processed as file 1-8.)
(INTEGER*2 or fixed bin(15)).

file_un.it The PRIMOS file-unit (funit) number from 0 through
32761. (Users may assign 2 and above; the system
makes assignments for 0 and 1.) File units are
discussed in Vol. II as well as in the Advanced
Programmer's Guide. (INTEGER*2 or fixed bin(15)).

s u b _ u n i t T h e u n i t f o r m u l t i - u n i t d e v i c e s (f o r d i s k , fi l e
unit number). This is the same as the physical
unit (see Table 2-3). (INTEGER*2 or fixed
b in (15)) .

F i r s t E d i t i o n 2 - 1 0

Device Assignment

TEMPORARY DEVICE ASSIGNMENT

The user may assign any device by calling the ATTDEV subroutine.
ATTDEV controls mapping of logical units into physical devices and
controls the record size associated with the logical unit. Nonsharable
devices may also be assigned on command level with the PRIMOS command
ASSIGN. If you wish to make a permanent device assignment, go to that
section after the descriptions of IOCS$G, IOCS$F, and ATTDEV.

As discussed in Chapter 2, IOCS is limited to the use of 127 default
file units per user, whereas the file system subroutines in Volume II
use PRIMOS to dynamically allocate up to 327 61 file units per user.

IOCS is also limited to a maximum of 141 FORTRAN logical units that it
does not dynamical ly al locate and free. Therefore, i f you plan to
extensively use IOCS subroutines, you must make a strategic use of the
logical unit handlers IOCS$G and IOCS$F to obtain an available logical
unit. You must then map that logical unit to an available file unit,
using a call to ATTDEV. You may assign file units greater than the
default 127, but you are still limited to 141 logical units.

Caut ion

R-Mode subroutines can be called from FTN and PMA in R-Mode
only. If you call an R-Mode routine from a program in a
di fferent mode, the resul ts are unpredictable. Refer to the
FORTRAN and PMA chapters in Volume I for information on
declaring parameters in FTN and PMA, respectively.

3 - 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

IOCS$ GET LOGICAL UNIT

Alternate Name

Calls from FTN programs require the six-character name
languages may use IOCS$G as an optional calling form.

IOCS$G. Other

Purpose

This routine is used to perform two tasks: 1) to provide an available
logical file unit number to a calling program; 2) to set aside as "in
use" a particular logical file unit number already found available.

Usage

DCL IOCS$_GET_LOGICAL_UNIT ENTRY(FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15));

CALL IOCS$_GET_LOGICAL_UNIT (key, logical_unit,
code);

Parameters

key

INPUT
be:

1

2

Indicates the desired function to be performed. Values may

get an available logical unit

set the specified logical unit to "in use"

log i ca l_un i t

INPUT/OUTPUT. If key=l, logical_unit returns as output the number
of an available logical unit. If key=2, you must input in
logical_unit the number of that logical unit whose bit is to be set
in the logical unit table (LUTBL). Valid logical unit values are
in the range 1-141.

First Edition 3-2

I O C S $ _ G E T _ L O G I C A L _ U N I T D E V I C E A S S I G N M E N T

code

OUTPUT. Indicates the resul t o f the subrout ine request . Aside
from the usual code of (0) for success, possible values are:

E$NSUC no available logical unit numbers

E$UIUS logical unit already in use

E$BUNT logical unit is not a valid number

D i s c u s s i o n

When a program calls this subroutine with key=l (get an available
log ica l fi le un i t) , the rout ine re turns that number in log ica l_un i t .
I f there are no available logical unit numbers, the routine returns
E$NSUC in code.

When a program calls this subroutine with key=2 (set a bit in the
l o g i c a l u n i t t a b l e) , t h e r o u t i n e w i l l a t t e m p t t o s e t t h e b i t
corresponding to that log ica l un i t number input in log ica l_uni t . I f
the unit is already in use, code returns E$UIUS. If the unit is not
valid, code returns E$BUNT. Otherwise code returns the usual 0 to
indicate completion with no errors.

Loading and Linking Information

NPFTNLB — V-Mode (unshared)
PFTNLB — V-Mode

3 - 3 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

IOCS$_FREE_LOGICAL_UNIT

Alternate Name

Calls from FTN programs require the six-character name: IOCS$F. Other
languages may use IOCS$F as an optional calling form.

Purpose

This routine allows a calling program to free a logical file unit
number so that it is made available in the Logical Unit Table (LUTBL)
to another calling program.

Usage

DCL IOCS$_FREE_LOGICAL_UNIT ENTRY(FIXED BIN(15), FIXED BIN(15));

CALL IOCS$_FREE_LOGICAL_UNIT (logical_unit, code) ;

Parameters

l o g i c a l _ u n i t

INPUT. This must contain the logical file unit number that is
being freed to the logical unit table. Valid logical unit values
are in the range 1-141.

code

OUTPUT. Indicates the result of the subroutine request. The
possible values are:

E$OK The call to IOCS$F was completed without error,

E$BUNT The logical unit is not a valid number.

E$UNOP The logical unit is not open.

F i r s t E d i t i o n , U p d a t e 2 3 - 4

I O C S $ _ F R E E _ L O G I C A L _ U N I T D E V I C E A S S I G N M E N T

Discussion

IOCS$_FREE_LOGICAL_UNIT frees to the Logical Unit Table the number
specified in logical_unit. The routine returns a success code of E$OK I
if the unit was freed, or E$UNOP if the unit is not open. I

If the unit number passed is not a valid unit number, then an error
code E$BUNT is returned in code.

Loading and Linking Information

NPFTNLB — V-Mode (unshared)
PFTNLB — V-Mode

3 - 5 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

ATTDEV

Purpose

ATTDEV attaches specified devices by associating logical__device with
physical_device and associating the logical_device with a specific
physical unit or file unit for the device.

Usage

DCL ATTDEV ENTRY(FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15));

CALL ATTDEV (logical_device, physical_device, physical_unit,
bu f fe r_s ize) ;

Parameters

logical_device

INPUT. The device-independent logical I/O unit (Table 2-3),
synonymous with the FORTRAN logical unit. This number cannot be
changed.

physical_device

INPUT. The number corresponding to the relevant device-type in
(Table 2-2) .

phys ica l_uni t

INPUT. The sub-unit number of a physical device having more than
one unit (refer to Table 2-3). A physical unit designation
distinguishes among the units of a physical device that has
multiple units, such as a magnetic tape controller. For disk (the
file system), the physical unit corresponds to the file unit. If
the device has only one unit, its sub-unit number is 1. If it is a
multiple-unit device such as disk or tape, sub-units 1 through 8
may be specified. (On disk, a sub-unit is actually processed as
file 1-8.)

buffer_s ize

INPUT. The record size associated with the logical unit. It must
be as large as maximum record size, expressed in 16-bit halfwords.

First Edition, Update 2 3-6

ATTDEV

Discussion

DEVICE ASSIGNMENT

For the given logical_device, set the physical_device, physical_unit,
and buffer_size so that the logical unit has a current mapping. Note
that buffer_size is measured in halfwords (holding two characters in
each).

Example

To reassign:

• a card reader (logical unit 3)

• to physical device 2 (which has no sub-units)

• with the ability to read 80-column cards (i.e., 80/2)

enter the following:

CALL ATTDEV(3, 2, 0, 40)

Errors

If device is incorrect, ATTDEV returns the message:

ATTDEV BAD UNIT (phvsical_unit)

Loading and Linking Information

FTNLIB
PFTNLB
NPFTNLB

R-Mode
V-Mode
V-Mode (unshared)

3-7 First Edition

S U B R O U T I N E S , V O L U M E I V A T T D E V

PERMANENT DEVICE ASSIGNMENT

Users whose programs need to use devices other than the user terminal,
the disks, or paper-tape reader or punch, or who wish to change the
assignment of logical to physical devices must consult their System
Administrator. The following discussion is an overview of the System
Administrator's work.

To facilitate changes to device assignments, the tables used by IOCS
(such as LUTBL and PUTBL) are in the following files on the master
disk.

V-Mode SYSTEM_LIBRARYSROINSERT>C0NI0C . INS . PMA

R-Mode RFTNLIB>IOCS>CONIOC.PMA

Ask your System Administrator how to locate the master disk on a
multidisk system.

Note that the R-Mode CONIOC.PMA in the RFTNLIB supports only the user
terminal, the paper-tape reader, paper-tape punch, and the PRIMOS file
system. An attempt to perform I/O to a physical device not supported
by CONIOC will fail. The default CONIOC for V-Mode supports the user
terminal and PRIMOS file system only.

IOCS Tables

If a computer installation requires that user programs use devices not
supported by CONIOC, the System Administrator must modify the CONIOC
tables RATBL, RBTBL, WATBL, and WBTBL, and then rebuild the FORTRAN
library. There is a version of CONIOC that contains all the available
IOCS drivers set up in the appropriate tables. This file is
INSERT>FULCON.INS.PMA in SYSTEM_LIBRARYSRC, or IOCS>FULCON.PMA in
RFTNLIB. The System Administrator can use FULCON as an example of how
to set up CONIOC. The table entries that are not required can be set
to 0.

T h e S y s t e m A d m i n i s t r a t o r m a y a l s o c h a n g e t h e d e f a u l t
logical-to-physical-device association as given in Tables 2-2 and 2-3
by changing the IOCS tables RATBL, TBTBL, WATBL, and CNTBL in CONIOC.
For example, the fifth entry of LUTBL (indicating logical device 5)
contains 7. Entry 7, the RATBL, contains I$AD07, which is a driver for
the PRIMOS file system. Other numbers indicate physical devices, as
shown in Table 2-2. PUTBL is the sub-unit table. The sub-unit table
contains the individual unit or file numbers as required for multifile
devices. For example, LUTBL contains the same number of logical
devices 21, 22, 23, and 24, indicating 9-track magnetic tape. PUTBL
contains 0, 1, 2, and 3 for logical devices 21, 22, 23, and 24
indicating unit 0, 1, 2, and 3 of 9-track magnetic tapes.

F i r s t E d i t i o n 3 - 8

A T T D E V D E V I C E A S S I G N M E N T

Modifying CONIOC to Change Device Assignment

Changing a device assignment is a System Administrator's responsibility
and not a user function. The System Administrator may add or delete a
device to any of the following tables.

R AT B L R e a d A S C I I t a b l e .

R B T B L R e a d b i n a r y t a b l e .

W AT B L W r i t e A S C I I t a b l e .

W B T B L W r i t e b i n a r y t a b l e .

C N T B L P e r f o r m c o n t r o l f u n c t i o n (e n d fi l e , r e w i n d , e t c .)

Input-only Devices: Input-only devices such as the card reader do not
need WATBL and WBTBL entries. Furthermore, an ASCII-only device (such
as a line printer) does not need RBTBL and WBTBL entries.

Order of Entries: The order of entries in the above-mentioned tables
corresponds to physical-device numbers defined in Table 2-2.

R-Mode Procedures:

1 A t t a c h t o R F T N L I B > I O C S .

2 Edit the appropriate tables within CONIOC.PMA.

3 Replace the 0 with the corresponding subroutine name for
the desired device.

4 Rebui ld the RFTNLIB l ibrary. (See below.)

3 - 9 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V A T T D E V

V-Mode Procedures:

1 Attach to SYSTEM_LIBRARYSROINSERT.

2 Edit the appropriate tables within the CONIOC.INS.PMA.

3 Replace the word NULLDEVICE with the appropriate device
subroutine name.

4 Rebuild the SYSTEM_LIBRARYSRC Library. (See below.)

How to Rebuild the FORTRAN Library after Modifying CONIOC

After you have made changes in CONIOC for either the R-mode or V-mode
version of the FORTRAN library (see the previous procedures), you must
rebuild the library before the changes will take effect.

R-Mode Procedures: Rebuild the R-Mode FORTRAN library as follows:

1 A t t a c h t o R F T N L I B .

2 R u n R F T N L I B . B U I L D . C P L .

3 Run INSTALL_FTNL IB .CPL .

4 S h a r e t h e n e w l i b r a r y (a S y s t e m A d m i n i s t r a t o r
procedure).

V-Mode Procedures: Rebuild the V-Mode FORTRAN library as follows:

1 Attach to SYSTEMJL.IBARYSRC

2 Run SYSTEM_LIBRARY.BUILD.CPL.

3 S h a r e t h e n e w l i b r a r y (a S y s t e m A d m i n i s t r a t o r
procedure).

F i r s t E d i t i o n 3 - 1 0

Device-Independent
Drivers

This chapter presents the subroutines listed in the top (horizontal]
row of Table 2-1. The subroutines have the following functions:

Routine Function

WRASC Write ASCII data

RDASC Read ASCII data

WRBIN Write binary data

RDBIN Read binary data

CONTRL Other control functions

Maintain device independence in your data transfers through the use of
these IOCS drivers. These device-independent or first-level drivers
route the I/O request to one of the device-dependent drivers, as shown
in Table 2-1 and Figure 2-1. The device-dependent drivers are
presented in the following chapters (5 through 7). Each column of
Table 2-1 represents an I/O function, and each row a specific physical
device. All drivers in a single column are designed to be compatible
in terms of internal data format.

4-1 First Edition

SUBROUTINES, VOLUME IV

DATA FORMATS

All first-level and second-level device drivers are uniform in the
internal representation of data. All ASCII data, for example, has the
same internal format regardless of the physical device.

ASCII Data

Data associated with logical I/O functions RDASC (Read ASCII) and WRASC
(Write ASCII) are represented internally as an ASCII string in card
image format. This string is of length N halfwords with each halfword
containing ASCII-coded characters. (N is defined in the calling
sequence to the driver.)

Notes

1. The new line character ('212) must not be used as data
because it is the end-of-record indicator.

2. ASCII drivers should be used only to transfer printable
ASCII characters.

Binary Data

Use RDBIN and WRBIN to transfer binary data. The external format
varies considerably from device to device, but the internal format
remains the same. Binary data can consist of anything and is not
interpreted by the driver in any way.

The parameter buffer (buffer address) in a call to RDBIN (Read Binary)
or WRBIN (Write Binary) defines the first halfword of the binary data.
The user must define the halfword count on output.

Caution

R-mode subroutines can be called from FTN and PMA in R-mode
only. If you call an R-mode routine from a program in a
different mode, the results are unpredictable. Refer to the
FORTRAN and PMA chapters in Volume I for information on
declaring parameters in FTN and PMA, respectively.

First Edition 4-2

DEVICE-INDEPENDENT DRIVERS

WRASC

Purpose

WRASC writes ASCII characters to any output device.

Usage

DCL WRASC ENTRY(FIXED BIN(15), CHAR(*), FIXED BIN(15),
FIXED BIN(15));

CALL WRASC (logical_device, buffer, count, altrtn);

Parameters

logical device

INPUT. The device-independent logical I/O unit (Table 2-3),
synonymous with the FORTRAN logical unit. This number cannot be
changed.

b u f f e r

INPUT. The name of a data area from which data in memory is moved
to the output device.

count

INPUT. The number of halfwords to be transferred, or the length in
halfwords of a buffer or filename.

a l t r t n

INPUT. The value of a numeric label in the user's FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument, but not
use 0 .

4 - 3 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V W R A S C

Discussion

The contents of buffer are moved from memory to the output device. The
format of the data on the output medium is device-specific. Memory is
assumed to consist of ASCII, two characters per halfword.

Loading and Linking Information

FTNLIB — R-mode
PFTNLB — V-mode
NPFTNLB — V-mode (unshared)
SVCLIB — R-mode (maintained for PRIMOS-II)

F i r s t E d i t i o n 4 - 4

DEVICE-INDEPENDENT DRIVERSr
* - R D A S C

Purpose

RDASC reads ASCII characters from any input device.

Usage

DCL RDASC ENTRY(FIXED BIN(15), CHAR(*), FIXED BIN(15),
FIXED BIN(15));

CALL RDASC (logical_device, buffer, count, altrtn);

Parameters

logical device

INPUT. The device-independent logical I/O unit (Table 2-3),
synonymous with the FORTRAN logical unit.

r
r

b u f f e r

OUTPUT. The name of a data area to which data is moved from the
input device.

count

INPUT. The number of halfwords to be transferred, or the length
halfwords of a buffer or filename.

a l t r t n

INPUT. The value of a numeric label in the user's FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument but not
use 0.

4 - 5 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V R D A S C

Discussion

One record is brought into memory. Buffer is always filled with count
ASCII characters, two per halfword. If the record is longer than count
halfwords, buffer contains the first count halfwords in the record and
the next successive read will give the first count halfwords of the
next record, not the remaining halfwords of the long record. If the
record is less than count halfwords, the remainder of the buffer will
be blank-fil led.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

F i r s t E d i t i o n 4 - 6

DEVICE-INDEPENDENT DRIVERS

r WRBIN

Purpose

WRBIN writes binary data to any output device.

Usage

DCL WRBIN ENTRY(FIXED BIN(15), CHAR(*), FIXED BIN(15),
FIXED BIN(15));

CALL WRBIN (logical_device,buffer,count,altrtn);

Parameters

logical device

INPUT. The device-independent logical I/O unit (Table 2-3),
synonymous with the FORTRAN logical unit. This number cannot be
changed.

b u f f e r

INPUT. The name of a data area from which data in memory is moved
to the output device.

count

INPUT. The number of halfwords to be transferred, or the length in
halfwords of a buffer or filename.

a l t r t n

INPUT. The value of a numeric label in the user's FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument but not
use 0 .

4 - 7 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V W R B I N

Discussion

The number of halfwords specified by count are written from buffer to
t h e s p e c i fi c o u t p u t d e v i c e . T h e f o r m a t o f t h e d a t a i s
device-dependent.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

F i r s t E d i t i o n 4 - 8 - ^

DEVICE-INDEPENDENT DRIVERS

RDBIN

Purpose

RDBIN reads binary input from any input device.

Usage

DCL RDBIN ENTRY(FIXED BIN(15), CHAR(*), FIXED BIN(15),
FIXED BIN(15));

CALL RDBIN (logical_device,buffer,count,
a l t r t n) ;

Parameters

logical_device

INPUT. The device-independent logical I/O unit (Table 2-3),
synonymous with the FORTRAN logical unit. This number cannot be
changed.

b u f f e r

OUTPUT. The name of a data area in memory to which data is moved
from the input device.

count

INPUT. The number of halfwords to be transferred, or the length in
halfwords of a buffer or filename.

a l t r t n

INPUT. The value of a numeric label in the user's FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument but not
use 0.

4 - 9 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV RDBIN

Discussion

A record is read into memory. Count is the maximum number of halfwords
that will be read into buffer. If the record is less than count long,
then count will be set to the number of halfwords actually read. If
the record is longer than count, only the first count halfwords will be
read.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

First Edition 4-10

DEVICE-INDEPENDENT DRIVERS

CONTRL

Purpose

Use of CONTRL provides certain nondata transfer functions, such as
opening a PRIMOS file for reading. CONTRL has generally been replaced
with SRCH$$, but is maintained here for certain IOCS applications.

Usage

DCL CONTRL ENTRY(FIXED BIN(15), CHAR(*) VARYING, FIXED BIN(15),
FIXED BIN(15));

CALL CONTRL (key, name, logical_device, altrtn);

Parameters

key

INPUT. A numeric option code that may have the following values

-1

-2

-3

-4

Open for reading.

Open for writing.

Open for read/write.

Close.

Delete file.

Move forward one file mark (MT only).

Rewind to beginning of file.

Select device and read status (MT only). Status is
returned in the A-register, and must be read by a
user-written PMA subroutine.

Write file mark (MT only).

Backspace one record (MT only).

Backspace one file mark (MT only).

Rewind to beginning of tape (MT only).

4-11 First Edition

S U B R O U T I N E S , V O L U M E I V C O N T R L

Note

For calls to disk files, key may have many other values.
S e e S R C H $ $. K e y s o t h e r t h a n 1 - 4 a r e n o t
device-independent.

name

INPUT. Filename (0 if none).

logical_device

INPUT. The device-independent logical I/O unit (Table 2-3),
synonymous with the FORTRAN logical unit.

a l t r t n

INPUT. The value of a numeric label in the user's FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument but not
use 0.

Discussion

Funct ions not appl icable to a part icular device are ignored;
therefore, functions can be requested in a device-independent way. See
Table 4-1 for operation effects.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II]

F i r s t E d i t i o n 4 - 1 2

CONTRL DEVICE-INDEPENDENT DRIVERS

Table 4-1
List of Keys and Operating Effects for CONTRL

r
r

Paper-Tape
Key Terminal Reader/Punch Magtape D i s k

(C $ A 0 1) (C $ P 0 2) (C$Mxx) (SEARCH)

1 a a

2 q q

3 q q

4 r r

5 —

6 q q

7 s s

8 —

- 1

-2

-3

-4

Open for read.
Open for write.
Open to read and write.
Rewind and close file.
D e l e t e fi l e .

f Position to beginning of fi l e .
g Tr u n c a t e fi l e .
h Move forward one record.
i Move forward one file ma r k .
k Select device and read st a t u s .
1 Write file mark.
m Backspace one record.
n Backspace one file mark.
o Rewind to BOT (beginning of tape)
P C lose fi l e .
q Turn on punch and punch r e a d e r.
r If device was open for output, punch trailer

and turn off paper-tape punch and r e a d e r.
s Halts al lowing operator

Type 'START' to continue
to rewind t a p e .

z Abort (BAD KEY error).

Keys othe r than 1 through 4 are not device-independent.

4-13 First Edition

Disk Subroutines

This chapter describes two groups of subroutines for disk I/O
operations. It also describes the subroutine DKGEO$.

The first group is a subset of the device-dependent drivers listed in
Table 2-1. They are the drivers listed in the rows for the PRIMOS file
system. Most users will find that other (file system) subroutines
described in Volume II do the same function as these routines, but in a
manner more accessible to the user.

The second group of subroutines are obsolete non-file-system disk
subroutines: D$INIT, RRECL, and WRECL. The subroutines are maintained
here for any remaining sites using such a disk system not based on
fi l e s .

The last subroutine, DKGEO$, is used for registering the format of
non-standard disks with a disk driver.

5 - 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

These are the subroutines presented or listed in this chapter:

R o u t i n e M e a n i n g

O$AD07 Write ASCII to disk (obsolete).

I$AD07 Read ASCII from disk.

O$BD07 Write binary to disk.

I$BD07 Read binary from disk.

O$AD08 Write ASCII to disk (fixed-length records)

D$INIT Initialize disk (obsolete) .

RRECL Read one disk record (obsolete).

WRECL Write one disk record (obsolete).

DKGEO$ Register disk format with driver.

Caution

R-mode subroutines can be called from FTN and PMA in R-mode
only. If you call an R-mode routine from a program in a
different mode, the results are unpredictable. Refer to the
FORTRAN and PMA chapters in Volume I for information on
declaring parameters in FTN and PMA, respectively.

DRIVER SUBROUTINES

These subroutines are the drivers listed in Table 2-1 as the
device-dependent drivers for the PRIMOS file system, in both compressed
and uncompressed formats. They are: O$AD07, I$AD07, O$BD07, I$BD07,
and O$BD08.

First Edition 5-2

DISK SUBROUTINES

O$AD07
Note

O$AD07 has been replaced by WTLIN$ (see Volume II). The
description for O$AD07 has been relocated to Appendix E "Other
Obsolete Subroutines."

5 - 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

l$AD07

Purpose

I$AD07 reads information from the disk file open on file_unit, in
compressed ASCII format.

Usage

DCL I$AD07 ENTRY(FIXED BIN(15), CHAR(*),
FIXED BIN(15), FIXED BIN(15));

CALL I$AD07 (file_unit, buffer, count, altrn);

Parameters

fi l e _ u n i t

INPUT. The PRIMOS file unit (funit) number from 0 through 327 61.
(Users may assign 2 through 32761.) Since a file unit has a
position and access method, a user program need not keep track of a
file's position and access. Examples of file unit strategy are
given with SRCH$$ in Volume II.

b u f f e r

OUTPUT. The name of a data area in memory to which data
from the disk file.

is moved

count

INPUT. The number of halfwords to be transferred, or the length in
halfwords of a buffer or filename.

a l t r t n

INPUT. The value of a numeric label in the user's FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument, but not
use 0 .

First Edition 5-4

I $ A D 0 7 D I S K S U B R O U T I N E Sc
W Load ing and L ink ing In fo rmat ion

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

r
\ 5 ~ 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

O$BD07

Purpose

O$BD07 writes binary information to the file open on file_unit

Usage

DCL O$BD07 ENTRY(FIXED BIN(15), CHAR(*),
FIXED BIN(15), FIXED BIN(15));

CALL O$BD07 (file_unit, buffer, count, altrtn);

Parameters

fi l e _ u n i t

INPUT. The PRIMOS file unit (funit) number from 0 through 32761.
(Users may assign 2 through 327 61.) Since a file unit has a
position and access method, a user program need not keep track of a
file's position and access. Examples of file unit strategy are
given with SRCH$$ in Volume II.

b u f f e r

INPUT. The name of a data area in memory from which data is moved
to the disk file.

count

INPUT. The number of halfwords to be transferred, or the length in
halfwords of a buffer or filename.

a l t r t n

INPUT. The value of a numeric label in the user's FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument, but not
use 0.

First Edition 5-6

O $ B D 0 7 D I S K S U B R O U T I N E S

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

r
f 5 _ 7 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

l$BD07

Purpose

I$BD07 reads binary information from the file open on file_unit

Usage

DCL I$BD07 ENTRY(FIXED BIN(15), CHAR(*),
FIXED BIN(15), FIXED BIN(15));

CALL I$BD07 (file_unit, buffer, count, altrtn);

Parameters

fi l e _ u n i t

INPUT. The PRIMOS file unit (funit) number from 0 throuhg 327 61.
(Users may assign 2 through 32761.) Since a file unit has a
position and access method, a user program need not keep track of a
file's position and access. Examples of file unit strategy are
given with SRCH$$ in Volume II.

b u f f e r

OUTPUT. The name of a data area in memory to which data
from the disk file.

is moved

count

INPUT. The number of halfwords to be transferred, or the length in
halfwords of a buffer or filename.

a l t r t n

INPUT. The value of a numeric label in the user's FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument, but not
use 0.

First Edition 5-1

I $ B D 0 7 D I S K S U B R O U T I N E S

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

r̂̂
 5 - 9 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

O$AD08

Purpose

O$AD08 writes ASCII from buffer onto the disk file open on file_unit

Usage

DCL O$AD08 ENTRY(FIXED BIN(15), CHAR(*),
FIXED BIN(15), FIXED BIN(15));

CALL O$AD08 (file_unit, buffer, count, altrtn);

Parameters

fi l e _ u n i t

INPUT. The PRIMOS file unit (funit) number from 0 through 32761.
(Users may assign 2 through 32761.) Since a file unit has a
position and access method, a user program need not keep track of a
file's position and access. Examples of file unit strategy are
given with SRCH$$ in Volume II.

b u f f e r

INPUT. The name of a data area in memory from which data is
to the disk file.

moved

count

INPUT. The number of halfwords to be transferred, or the length in
halfwords of a buffer or filename.

a l t r t n

INPUT. The value of a numeric label in the user's FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument, but not
use 0 .

First Edition 5-10

O $ A D 0 8 D I S K S U B R O U T I N E S

Discussion

Information is written on the disk in fixed-length records. Each
record consists of count halfwords followed by a halfword containing NL
and NULL ('105000). This driver is not in the standard CONIOC supplied
by Prime.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

r
^ 5 _ 1 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

O B S O L E T E D I S K S U B R O U T I N E S " ^

The subroutines D$INIT, RRECL, and WRECL are not in FTNLIB. They are
intended for use by the System Administrator.

^ >

F i r s t E d i t i o n 5 - 1 2 ~ I

DISK SUBROUTINES

D$INIT

Purpose

The D$INIT routine is called to initialize disk devices.

Usage

DCL D$INIT ENTRY(FIXED BIN(15));

CALL D$INIT (pdisk);

Parameters

pdisk

INPUT. The physical disk number to be initialized. (See RRECL,
following the Discussion below.)

Discussion

D$INIT initializes the disk controller and performs a seek to cylinder
0 on pdisk. D$INIT must be called prior to any RRECL or WRECL calls.
pdisk must be assigned by the PRIMOS ASSIGN command before calling this
routine. D$INIT was intended by use only by outdated system utilities.

5 - 1 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

RRECL

Purpose

Subroutine RRECL reads one disk record from a disk into buffer in
memory. Before RRECL is called, the disk must be assigned by the
PRIMOS ASSIGN command and D$INIT must be called to initialize the disk.

The RRECL routine was intended for use only by now-outdated system
utilities such as FIXRAT, MAKE, and the old disk COPY.

Usage

DCL RRECL ENTRY(PTR, FIXED BIN(15), FIXED BIN(15),
FIXED BIN(31), BITU(16) ALIGNED, FIXED BIN(15));

CALL RRECL (addr(buffer), length, option_word
ra , pd isk , a l t r tn) ;

Parameters

a d d r (b u f f e r)

INPUT. Pointer to an array into which length halfwords from record
ra is to be transferred.

l e n g t h

INPUT. The number of halfwords to be transferred.

opt ion_word

INPUT. A 16-bit halfword with the following options:
Bit 1 set Perform current record address check.

Bit 2 set Ignore checksum error.

Bit 3 set Read an entire track (beginning at ra) into a buffer
3520 halfwords long, beginning at the buffer pointed
to by ra. (This feature may be used only if RRECL
is running under PRIMOS II , is reading a disk
connected to the 4001/4002 control ler, and is a
32-sector pack.)

F i r s t E d i t i o n 5 - 1 4

R R E C L D I S K S U B R O U T I N E Sr
(^ B i t 4 s e t F o r m a t t h e t r a c k . T h i s b i t i s o n l y s i g n i fi c a n t f o r

storage module disks.

Bits 5-8 Reserved.

Bits 9-16 Must be set on (1) .

ra

INPUT. A 32-bit integer (INTEGER*4) specifying a disk record
address. Legal addresses depend on the size of the disk.

S i z e r a R a n g e

F l o p p y d i s k 0 - 3 0 3

1 . 5 M d i s k p a c k 0 - 3 2 4 7

3 . 0 M d i s k p a c k 0 - 6 4 9 5

3 0 M d i s k p a c k 0 - 6 4 9 5 9

128K fixed-head disk 0-255

256K fixed-head disk 0-511

512K fixed-head disk 0-1023

1024K fixed-head disk 0-2047

pdisk

INPUT. The physical disk number of the disk to be read. pdisk
numbers are the same numbers available for use in the ASSIGN and
STARTUP commands of PRIMOS.

a l t r t n

INPUT. An integer variable in the user's FORTRAN program to be
used as an alternate return in case of uncorrectable disk errors.
If this argument is 0 or omitted, an error message is printed.

r
^ ^ 5 - 1 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV RRECL

Discussion

If an error is encountered and control goes to altrtn, ERRVEC (see
Appendix B in this Volume) is set as follows:

C o d e M e s s a g e

ERRVEC(1) = WB On supervisor terminal: 10 times

ERRVEC(2) = 0 DISK RD ERROR pdisk ra status

On user terminal: UNRECOVERED ERROR

Meaning

Disk hardware

WRITE PROTECT
e r r o r

ERRVEC(1) = WB On user terminal: 10 times

ERRVEC(2) = CR DISK RD ERROR pdisk ra status
followed by
UNRECOVERED ERROR

Current record

Address error

See the System Administrator's Guide for a description of status error
codes.

Notes

Length must be between 0 and 448 unless pdisk is a storage
module, in which case length must be between 0 and 1040. If
this number is not 448 and pdisk is 20-27 (diskette), a
checksum error is always generated; bypassing can be
accomplished by setting the option-word's bit 2 to 1. No
check is made for legality of ra.

On a DISK NOT READY, RRECL does not wait for the disk to
become ready under PRIMOS III or PRIMOS. Under PRIMOS II,
RRECL prints a single error message and waits for the disk to
become ready.

On any other read error, an error message is printed at the
system terminal, followed by a seek to cylinder 0 and a
reread of the record. If 10 errors occur, the message
UNRECOVERED ERROR is typed to the user or altrtn is taken.

First Edition 5-16

DISK SUBROUTINES

WRECL

Purpose

Subroutine WRECL writes the disk record to a disk from buffer in
memory. The arguments and rules of the WRECL call are identical to
those of RRECL except for bits 1 and 2 of option-word, which have no
meaning on write. For a call to write a record on the diskette, the
buffer length must be 448 words.

D$INIT must be called before a call to WRECL.

Usage

DCL WRECL ENTRY(PTR, FIXED BIN(15), FIXED BIN(15),
BIT(16) ALIGNED, FIXED BIN(15));

CALL WRECL (addr(buffer), length, option_word,
ra , a l t r tn) ;

Parameters

Same as for RRECL. See below for clarification.

Discussion

The meaning of the parameters is the same as previously described in
RRECL, except that the function of the command is to write to, rather
than read from, the specified record address. The user of WRECL is
responsible for being careful to write only on areas of the disk that
do not contain significant user or operating system information. An
attempt to write on a write-protected disk generates the message:

DISK WT ERROR pdisk opt ion-word s ta tus
WRITE PROTECT

on the supervisor terminal and the message:

UNRECOVERED ERROR

at the user terminal. ERRVEC(1) will contain error code WB, unless
altrtn is taken. Other write errors are retried ten times in a manner
similar to read errors. (Refer to RRECL.)

5 - 1 7 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

DKGEO$

Purpose

This subroutine supplies the disk driver with the sector count for
non-standard disk formatting. You may have programs that read and
write assigned disks directly, without using the PRIMOS file system.
The default formatting for disk files is 9 sectors per track. If your
disk is formatted with a different number of sectors, DKGEO$ must be
called to register the number of sectors with the disk driver.

Usage

DCL DKGEO$ ENTRY (FIXED BIN(15), POINTER, FIXED BIN(15));

CALL DKGEO$ (pdev, structp, code);

Parameters

pdev

INPUT. Physical device number.

s t r uc tp

INPUT. Pointer to the address of an input structure, with the
following format:

del 1 struc,
2 version_number bin(15), /* Must be 0 (input)*/
2 s p t b i n (1 5) ; / * (i n p u t) * /

code

OUTPUT. Returns either 0 for success or one of the standard error
codes, as given in Appendix A.

Discussion

This subroutine is necessary only if the number of sectors per track is
not 9. The disk driver's record reverts to 9 when the disk is
unassigned.

Loading and Linking Information

NPFTNLB — V-mode (unshared)
PFTNLB — V-mode

F i r s t E d i t i o n 5 - l i

Terminal Drivers and
Terminal/Paper-Tape Subroutines

OVERVIEW

This chapter defines certain terminal driver subroutines.

This chapter also defines subroutines used to transfer data to and from
a user terminal or card reader/punch (ASR). Some of these are a subset
of the device-dependent IOCS drivers shown in Table 2-1, in the rows
for the user terminal and for paper tape.

The subroutines described in this chapter are listed in Table 6-1.

For the continuity and completeness of this chapter on user-terminal
and paper-tape subroutines, a second table, (Table 6-2) also lists
other subroutines for general terminal use. However, these subroutines
are described in Volume III.

Note

These subroutines expect data to be halfword-aligned. Be aware
that F77 calls with a substring argument do not always pass the
argument left-justified in a halfword.

6 - 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

Table 6-1
Subroutines for User Terminal and Paper Tape

Device Routine

User terminal C$A01

User terminal or O$AA01
ASR punch

Keyboard or I$AA01
ASR reader

Func t i on

Paper Tape

I$AA12

C$P02

I$AP02

O$BP02

P U B

P10B

P U N

P10U

C o n t r o l s f u n c t i o n s f o r u s e r
t e r m i n a l .

O u t p u t s A S C I I t o t h e u s e r
terminal or ASR punch.

Inputs ASCII from terminal or
ASR reader.

Performs the same function as
I$AA01 bu t a l so a l l ows the
input to be from a cominput
fi l e .

C o n t r o l s f u n c t i o n s f o r p a p e r
tape.

I n p u t s A S C I I f r o m t h e
h igh-speed paper - tape reader.

O u t p u t s b i n a r y d a t a t o t h e
high-speed paper-tape punch.

Inputs one character from the
high-speed paper-tape reader to
Register A.

Outputs one character to the
h i g h - s p e e d p a p e r - t a p e p u n c h
from Register A.

Inputs one character from paper
t a p e , s e t s h i g h - o r d e r b i t ,
i gnores l i ne feeds , sends a
line feed when carriage return
is read.

Outputs one character to the
high-speed paper-tape punch.

F i r s t E d i t i o n 6-2

TERMINAL AND PAPER-TAPE SUBROUTINES

Table 6-2
Subroutines for General Terminal Use

Device Rout ine Func t i on

User terminal BREAK$ Inhibits or enables CONTROL-P.

C1IN G e t s n e x t c h a r a c t e r f r o m
terminal or command file.

C1IN$ G e t s n e x t c h a r a c t e r f r o m
c o m m a n d l i n e u n t i l c a r r i a g e
r e t u r n .

CNIN$ Moves characters from terminal
or command file to memory.

COMANL Reads a line of text from the
terminal or f rom a command
fi l e .

ERKL$$ Reads or sets erase and kill
c h a r a c t e r s .

TNOU Outputs count characters to the
use r t e rm ina l f o l l owed by a
line feed and carriage return.

TNOUA Outputs count characters to the
user terminal .

TOVFD$ Outputs the 16-bit integer num
to the terminal.

T U B Reads one character from the
user terminal into Register A.

TUN Reads one character from the
user terminal.

T10B W r i t e s o n e c h a r a c t e r f r o m
R e g i s t e r A t o t h e u s e r
t e r m i n a l .

T10U O u t p u t s c h a r t o t h e u s e r
terminal. The data type must
be a 16-bit integer in F77.

6-3 First Edition

SUBROUTINES, VOLUME IV

Table 6-2
Subroutines for General Terminal Use

(Continued)

Device Routine Function

User terminal TIDEC Inhibits or enables CONTROL-P.

TIDEC Inputs decimal number.

TIOCT Inputs an octal number.

TIHEX Inputs a hexadecimal number.

TODEC Outputs a six-character signed
decimal number.

TOOCT O u t p u t s a s i x - c h a r a c t e r
unsigned octal number.

TOHEX O u t p u t s a f o u r - c h a r a c t e r
unsigned hexadecimal number.

TONL Outputs Carriage return and
Line feed.

Caution

R-mode subroutines can be called from FTN and PMA in R-mode
only. If you call an R-mode routine from a program in a
different mode, the results are unpredictable. Refer to the
FORTRAN and PMA chapters in Volume I for information on
declaring parameters in FTN and PMA, respectively.

First Edition 6-4

TERMINAL AND PAPER-TAPE SUBROUTINES

C$A01

Purpose

C$A01 provides control functions for the user terminal. Because it is
written in R-mode only, the calling program must be written in either
FTN (as described below) or PMA.

Usage

INTEGER*2 key
INTEGER*2 name(l)
INTEGER*2 unit
INTEGER*2 altrtn

CALL C$A01 (key, name, unit[, altrtn])

Parameters

key

INPUT. Valid keys for C$A01 are 1 through 4 and 6 and 7. Refer to
Table 4-1 for the operating effects for each key.

name(1)

INPUT. The filename of the array for which the key declares a
control function. Rules for PRIMOS filenames apply.

u n i t

INPUT. Indicates the sub-unit number for this user terminal.

a l t r t n

INPUT. A parameter not used by this routine, but maintained for
coding purposes.

Loading and Linking Information

FTNLIB — R-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

6 - 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

O$AA01

Purpose

O$AA01 outputs ASCII to the user terminal or ASR punch.

Usage

DCL O$AA01 ENTRY(FIXED BIN(15), CHAR(*),
FIXED BIN(15)[, FIXED BIN(15)]);

CALL O$AA01 (sub_unit, buffer,
count [, a l t r tn]) ;

Parameters

sub__unit

INPUT. The sub-unit number of a physical device having more than
one unit. If the multi-unit device is an ASR card reader, the
possible choices are:

0 C R O , fi r s t c o n t r o l l e r

1 C R l , s e c o n d c o n t r o l l e r

b u f f e r

INPUT. Name of data area holding data for output to the device.

count

INPUT. Number of halfwords to be moved, two characters per
halfword.

a l t r t n

INPUT. A parameter not used by this routine, but maintained for
coding purposes.

Discussion

This subroutine itself calls the driver TNOU to perform the output from
buffer to the size of count.

F i r s t E d i t i o n 6 - 6

O $ A A 0 1 T E R M I N A L A N D P A P E R - T A P E S U B R O U T I N E S

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

r
^ 6 _ 7 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

l$AA01

Purpose

I$AA01 reads ASCII from the terminal or ASR reader.

Usage

DCL I$AA01 ENTRY(FIXED BIN(15), CHAR(*) VARYING,
FIXED BIN(15)[, FIXED BIN(15)]);

CALL I$AA01 (sub_unit, buffer,
count [, altrtn]);

Parameters

sub_unit

INPUT. The sub-unit number of a physical device having more than
one unit. If the multi-unit device is an ASR card reader, the
possible choices are:

0 C R O , fi r s t c o n t r o l l e r

1 C R l , s e c o n d c o n t r o l l e r

b u f f e r

OUTPUT. Name of data area that holds the data output from the
device.

count

INPUT. Number of halfwords to be moved, two characters per
halfword.

a l t r t n

INPUT. Alternate return for FORTRAN programs calling this
subroutine in case of end of file or other error. It is a numeric
label in the user's program; the number must be preceded by a $.
PL/I programs may also use altrtn, but its label must be in the
same stack frame used for the code of the calling module. Other
calling languages should omit the argument, but not use 0.

F i r s t E d i t i o n 6 - 8

I $ A A 0 1 T E R M I N A L A N D P A P E R - T A P E S U B R O U T I N E S

Discussion

The kill and erase characters (question mark and quote mark by default)
may modify the input line, as with the PRIMOS III command line. The
characters NUL, DEL, DLE, DC2, DC3, and DC4 are ignored. The character
EXT ('203) indicates the end of file and is used for reading tapes
through the user terminal.

Note that I$AA01 is not the entry for the user terminal in the
Prime-supplied CONIOC (Chapter 3). Ask your System Administrator to
put I$AA01 in the RATBL, as explained in Chapter 3, to read paper tapes
with user programs. The editor should be used to read in the tape, and
then the user may read the file from disk.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

6 - 9 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

l$AA12

Purpose

I$AA12 performs the same function as I$AA01 (it reads ASCII from the
terminal or ASR reader) but also allows the input from a cominput file.

Usage

DCL I$AA12 ENTRY(FIXED BIN(15), CHAR(*) VARYING,
FIXED BIN(15)[, FIXED BIN(15)]);

CALL I$AA12 (sub_unit, buffer,
count [, a l t r tn]) ;

Parameters

sub_unit

INPUT. The sub-unit number of a physical device having more than
one unit. If the multi-unit device is an ASR card reader, the
possible choices are:

CRO, first controller

CRl, second controller

b u f f e r

OUTPUT. Name of data area that holds the data output from the
device.

count

INPUT. Number of halfwords to be moved, two characters per
halfword.

a l t r t n

INPUT. Alternate return for FORTRAN programs calling this
subroutine in case of end of file or other error. It is a numeric
label in the user's program; the number must be preceded by a $.
PL/I programs may also use altrtn, but its label must be in the
same stack frame used for the code of the calling module. Other
calling languages should omit the argument, but not use 0.

First Edition 6-10

I $ A A 1 2 T E R M I N A L A N D P A P E R - T A P E S U B R O U T I N E S

Discussion

Refer to the discussion for I$AA01 for details on how I$AA12 handles
command characters. However, note that I$AA12 is the subroutine
referenced in the RATBL already.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

6 - 1 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

C$P02

Purpose

C$P02 provides control functions for paper tape

Usage

DCL C$P02 ENTRY(FIXED BIN(15), CHAR(*) VARYING,
FIXED BIN(15)[, FIXED BIN(15)]);

CALL C$P02 (key, name,
physical_unit [, altrtn]);

Parameters

key

INPUT. Valid keys for C$P02 are 1 through 4 and 6 and 7. Refer to
Table 4-1 for the operating effects for each key.

name

INPUT. The filename for which the key declares its control
function. Rules for PRIMOS filenames apply.

phys ica l_uni t

INPUT. Indicates the sub-uni t number for th is paper-tape
reader/punch.

a l t r t n

OUTPUT. A parameter not used by this routine, but maintained for
coding purposes.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

F i r s t E d i t i o n 6 - 1 2

TERMINAL AND PAPER-TAPE SUBROUTINESr
r l $ A P 0 2

Purpose

I$AP02 reads ASCII from the high-speed paper-tape reader.

Usage

DCL I$AP02 ENTRY(FIXED BIN(15), CHAR(*) VARYING, FIXED BIN(15)[,
FIXED BIN(15)]);

CALL I$AP02 (sub_unit, buffer, count[,
a l t r t n]) ;

Parameters

sub_unit

INPUT. The sub-unit number of a physical device having more than
one unit. If the multi-unit device is an ASR card reader, the
possible choices are:

0 C R O , fi r s t c o n t r o l l e r

1 C R l , s e c o n d c o n t r o l l e r

r
r

b u f f e r

OUTPUT. Name of data area that holds the data output from the
device.

count

INPUT. Number of halfwords to be moved, two characters per
halfword.

a l t r t n

INPUT. Alternate return for FORTRAN programs calling this
subroutine in case of end of file or other error. It is a numeric
label in the user's program; the number must be preceded by a $.
PL/I programs may also use altrtn, but its label must be in the
same stack frame used for the code of the calling module. Other
calling languages should omit the argument, but not use 0.

6 - 1 3 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V I $ A P 0 2

Discussion

The KILL and ERASE characters (question mark and double quote by
default) modify the input. NUL, DEL, DLE, DC2, DC3, and DC4 are
ignored. The character ETX ('203) indicates end of file.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

F i r s t E d i t i o n 6 - 1 4

TERMINAL AND PAPER-TAPE SUBROUTINES

O$BP02

Purpose

O$BP02 writes binary data to the high-speed paper-tape punch. Because
this subroutine is written in R-mode only, so must the calling program.
The Usage description below is given in FTN to suggest a calling
program in R-mode, compiled without the -64V option.

Usage

INTEGER*2 unit
INTEGER*2 buffer(1)
INTEGER*2 hwcnt
INTEGER*2 altrtn

CALL O$BP02 (unit, buffer, hwcnt[, altrtn])

Parameters

UNIT

INPUT. A sub-unit of the physical device, in this case a
high-speed paper-tape reader. Refer to Table 2-2 (paper-tape punch
is assigned to physical device #2) .

b u f f e r

INPUT. Data area name for the array that receives data from the
device.

hwcnt

INPUT. A count of the number of halfwords to be moved, two
characters per halfword.

a l t r t n

INPUT. A parameter not used by this routine, but maintained for
coding purposes.

r
r 6-15 First Edition

S U B R O U T I N E S , V O L U M E I V O $ B P 0 2

Discussion

The format of the paper-tape output can be found in a listing of this
driver. Ask your System Administrator for a copy of the listing.

Loading and Linking Information

FTNLIB — R-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

F i r s t E d i t i o n 6 - 1 6

TERMINAL AND PAPER-TAPE SUBROUTINES

P1IB

Purpose

PUB reads one character from the high-speed paper-tape reader to
Register A.

Usage

DCL PUB;

CALL PUB;

Discussion

This subroutine has no arguments; the calling program (for example, a
program written in Prime Macro Assembly language) must have access to
Register A.

Note

Data items used by the routines CNIN$, TNOU, TNOUA, TOVFD$,
TUB, T10B, TUN, T10U, TIDEC, TIOCT, TIHEX, TODEC, TOOCT,
TOHEX, TONL, PUB, P10U, AND PUN must be halfword-aligned.
Thus, for example, a FORTRAN statement such as

CALL TNOUA (A(I:I),INTS(3))

always outputs a halfword-aligned byte of data item A, though
the user may be expecting the second byte of a halfword to be
displayed.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

6-17 First Edition

SUBROUTINES, VOLUME IV

P10B

Purpose

PlOB writes one character to the high-speed paper-tape punch from
Register A.

Usage

DCL PlOB;

CALL PlOB;

Discussion

This subroutine has no arguments; the calling program must have access
to Register A.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

F i r s t E d i t i o n 6 - 1 8

TERMINAL AND PAPER-TAPE SUBROUTINES

P1IN

Purpose

PUN reads one character from paper tape.

Usage

DCL PUN ENTRY (FIXED BIN(15));

CALL PUN (char) ;

Parameters

char

OUTPUT. The character being loaded into memory from paper tape.

Discussion

The subroutine sets the high-order bit, ignores line feeds, and sends a
Line feed when a Carriage return is read.

Note

Data items used by the routines CNIN$, TNOU, TNOUA, TOVFD$,
TUB, T10B, TUN, T10U, TIDEC, TIOCT, TIHEX, TODEC, TOOCT,
TOHEX, TONL, PUB, PlOU, AND PlIN must be halfword-aligned.
Refer to PUB for a FORTRAN example.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

6-19 First Edition

SUBROUTINES, VOLUME IV

P10U

Purpose

PlOU writes one character to the high-speed paper-tape punch,

Usage

DCL PlOU entry(fixed bin(15));

CALL PlOU (char);

Parameters

char

INPUT. The character being written to paper tape.

Discussion

Zero the high-order bit before punching,
Carriage returns or Line feeds.

No special action is taken on

Note

Data items used by the routines CNIN$, TNOU, TNOUA, TOVFD$,
TUB, TlOB, TUN, T10U, TIDEC, TIOCT, TIHEX, TODEC, TOOCT,
TOHEX, TONL, PUB, PlOU, AND PUN must be halfword-aligned.
Refer to PUB for a FORTRAN example.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

First Edition 6-20

Other Peripheral
Devices

This chapter descr ibes subrout ines that contro l l ine pr inters,
printers/plotters, card readers, and magnetic tapes. These subroutines
are used for both formatted and raw data. Not all are in IOCS. Table
7-1 gives a list of the subroutines in this chapter.

LINE PRINTER SUBROUTINES

IOCS contains subroutines to control three types of line printers:

• O$AL04 to print on a Centronics line printer connected to the
System Option Controller (SOC);

• O$AL06 to print on a parallel-interface line printer connected
to the MPC Line Printer Controller;

• 0$AL14 to print on a Versatec Printer/Plotter connected to a
Versatec-SOC.

This section also includes SPOOL$ and SP$REQ for queuing files to be
printed, and T$LMPC to move data to the MPC line printer.

7 - 1 F i r s t E d i t i o n , U p d a t e 1

SUBROUTINES, VOLUME IV

Table 7-1
Per iphera l -handl ing Subrout ines

Line Pr in ters
O$AL04 Centronics LP.
O$AL0 6 Parallel interface to line printer (MPC)
0$AL14 Versa tec p r in te r.
T$LMPC Move data to LPC line printer.
SPOOL$ Insert a file in spooler queue.
SP$REQ Insert a file in spooler queue.

P r i n t e r / P l o t t e r
0$AL14
T$VG

Versatec
Versa tec

Card Reader/Punch
I$AC03 Input from parallel card reader.
I$AC0 9 Input from serial card reader.
I$AC15 Read and print card from parallel interface reader.
T$CMPC Input from MPC card reader.
O$AC03 Parallel interface to card punch.
0$AC15 Parallel interface to card punch and print on card.
T$PMPC Raw data mover.

Magnetic Tape
C$M05 Control functions for 9-track ASCII/binary (obsolete)
C$M10 Control functions for 7-track ASCII/binary (obsolete)
C$M11 Control functions for 7-track EBCDIC (obsolete).
C$M13 Control functions for 9-track EBCDIC (obsolete).
O$AM05 Write ASCII to 9-track (obsolete).
O$AM10 Write ASCII to 7-track (obsolete).
I$AM05 Read ASCII to 9-track (obsolete).
I$AM10 Read ASCII from 7-track (obsolete).
O$BM05 Write binary to 9-track (obsolete).
O$BM10 Write binary to 7-track (obsolete).
I$BM05 Read binary from 9-track (obsolete).
I$BM10 Read binary from 7-track (obsolete).
0$AM11 Write BCD to 7-track (obsolete).
0$AM13 Write EBCDIC to 9-track (obsolete).
I$AM11 Read BCD from 7-track (obsolete).
I$AM13 Read EBCDIC from 9-track (obsolete).
T$MT Raw data mover.

Caution

R-mode subroutines can be called from FTN and PMA in R-mode
only. If you call an R-mode routine from a program in a
different mode, the results are unpredictable.

First Edition, Update 1 7-2

OTHER PERIPHERAL DEVICES

O$AL04 or O$AL06

Purpose

Both these subroutines provide an interface to the line printers. The
two use identical subroutine calling formats, and therefore have a
Usage description below as 0$ALxx, where xx is replaced by the numbers
of the subroutine required. However, O$AL0 4 is for the serial line
printer, and must be called by a program using R-mode (either an FTN or
PMA program) while O$AL06 is for the MPC line printer.

0$AL14 is discussed separately below.

Usage

DCL 0$ALXX ENTRY (FIXED BIN(15), CHAR(*) VARYING, FIXED BIN(15),
FIXED BIN(15));

CALL 0$ALXX (physical_unit, buffer, count, altrtn);

Parameters

physica l_uni t

INPUT. Indicates the line printer unit number, with the following
possible values:

0 P R O , fi r s t c o n t r o l l e r

1 P R 1 , fi r s t c o n t r o l l e r

2 P R 2 , s e c o n d c o n t r o l l e r

3 P R 3 , s e c o n d c o n t r o l l e r

b u f f e r

INPUT. The name of the buffer where the text to be printed
resides. Print text is placed in the buffer, two characters per
halfword.

count

INPUT. The number of 16-bit halfwords of data to be printed.

7 - 3 F i r s t E d i t i o n , U p d a t e 1

S U B R O U T I N E S , V O L U M E I V O $ A L 0 4 o r O $ A L 0 6 * ^

a l t r t n ^

INPUT. An optional parameter, used if 0$ALxx encounters an error.
If an error occurs, control passes to the area within the calling
program named by this parameter.

Discussion

For more information on arguments, see Chapter 5.

Printer Control: The action taken by 0$ALxx depends on the data in the
buffer, and the current vertical control mode. Certain characters
within the data control the manner in which the data is printed. These
characters (codes) are described in the following paragraphs.

Vertical Control Modes: 0$ALxx has three vertical control modes:

• Forms control

• Header line and pagination control

• No-control

0$ALxx checks the first character in the data buffer for a .SOM. or
start-of-message character (ASCII '001). This character signifies a
change in the control mode. If the first character in the buffer is
not .SOM., the line is printed according to the current control mode.
The default mode is forms control.

Forms Control Mode: The first character in the buffer is not printed;
instead, it is used for forms control. Two different forms control
modes exist, one for FORTRAN and one for COBOL, as described below.

F i r s t E d i t i o n , U p d a t e 1 7 - 4

O $ A L 0 4 o r O $ A L 0 6 O T H E R P E R I P H E R A L D E V I C E S

FORTRAN Mode

FORTRAN mode allows the attaching of vertical format information to
each line of the data file. The first character position of each
line from the file does not appear in the printed output, and is
interpreted as shown below.

C h a r a c t e r M e a n i n g

1 E j e c t t o t o p o f n e x t p a g e .

+ P r i n t o v e r p r e v i o u s l i n e .

s p a c e A d v a n c e o n e l i n e .

0 A d v a n c e t w o l i n e s .

Advance three lines (skip two lines).

All other characters are interpreted as advance one line.

COBOL Mode

COBOL mode is identical to FORTRAN mode except that the format
information occupies the first two character positions of the line.
The first character is the same as for FORTRAN mode and the second
character is ignored.

Header Line and Pagination Control Mode: In header line and pagination
mode, 0$ALxx causes a header line to be printed, followed by three
blank lines, followed by 38 text lines. The header line consists of up
to 43 characters followed by a page count that is generated by 0$ALxx
when printing in this mode.

For O$AL0 6 and 0$AL14, enter pagination mode with a first halfword of
'000001 in buffer. In pagination mode with O$AL04, a form feed (octal
14 or 214) may be anywhere in the buffer line. All characters
preceding the form feed are printed, and all characters after it are
ignored. With O$AL04, the form feed must be in column 1 or 3.

No-control Mode: In No-control mode, no actions are taken by Q$ALxx.
A line containing an ASCII Form feed character (FF, '214) causes the
line preceding it to print, followed by a page eject. Carriage return
(CR, '215) causes the line preceding it to print with no line spacing.
Line feed (LF, '212) causes the line preceding it to print followed by
a line spacing operation. Any characters following a CR, LF, or FF are
ignored.

7 - 5 F i r s t E d i t i o n , U p d a t e 1

SUBROUTINES, VOLUME IV O$AL04 or O$AL06

Change of Mode Commands: Any data buffer beginning with a .SOM.
character causes 0$ALxx to take some action to change control mode.
The control mode change is determined by the character following the
.SOM., and is activated when a file is printed. The character
interpretations are:

000

001

036

037

Any Other

Enter no-control mode.

Enter control mode.

New header line - DO NOT reset page count.

Enter new page size specified by the 16-bit
number contained in the next computer halfword.

Enter header control mode characters.

Early Buffer Termination: A line feed (LF, '212) character terminates
the print line in the buffer, regardless of the count parameter.

Load Information: O$AL04 calls no other subroutines. O$AL06 calls
T$LMPC.

Loading and Linking Information

For O$AL04
FTNLIB R-mode

For O$AL0 6:
FTNLIB
NPFTNLB
PFTNLB

R-mode
V-mode (unshared)
V-mode

First Edition, Update 1 7-6

C T $ L M P C

OTHER PERIPHERAL DEVICES

r

Purpose

T$LMPC is a raw data mover, moving information from the user to one
line on the MPC line printer.

The user normally prints lines under program control using either
FORTRAN WRITE statements or a call to O$AL06, which in turn calls
T$LMPC. However, it is possible to call T$LMPC directly.

Usage

DCL T$LMPC ENTRY(FIXED BIN(15), PTR, FIXED BIN(15),
FIXED BIN(15), FIXED BIN(31));

CALL T$LMPC (logical_unit, addr(buffer), count,
instr, s tatus);

Parameters

l o g i c a l _ u n i t

INPUT. Line printer unit.

addr(buffer)

INPUT. A pointer to the buffer holding information to be printed
on the line printer. Information is expected to be packed two
characters per halfword.

count

INPUT. Number of halfwords to print on the current line.

i n s t r

INPUT. The instruction required by the l ine printer. Val id
instructions are:

I n s t r u c t i o n (O c t a l) M e a n i n g

' 1 0 0 0 0 0 R e a d s t a t u s .

' 4 0 0 0 0 P r i n t a l i n e .

' 2 0 0 1 2 S k i p a l i n e .

7 - 7 F i r s t E d i t i o n , U p d a t e 1

S U B R O U T I N E S , V O L U M E I V T $ L M P C

I n s t r u c t i o n (O c t a l) M e a n i n g

' 2 0 0 1 4 S k i p t o t o p o f p a g e .

'20100-20113 Skip to tape channel 0-11.

'20120-20137 Skip from 1 to 15 lines.

status

OUTPUT. A three-halfword vector that contains device code, status
of printer, and a space. Possible printer status is:

O c t a l V a l u e C o n d i t i o n

2 0 0 O n l i n e

1 0 0 N o t b u s y

Discussion

Under PRIMOS, line printer output is buffered. If T$LMPC is called and
the buffer is full, the user is placed in output-wait state. Later,
when the buffer is no longer full, the user is rescheduled, and the
T$LMPC call is retried. The user may issue a status-request call to
check if the buffer is full. If the buffer is full, then the not-busy
status is reset. Using this feature, a user program may check that the
buffer is not full, then output one line, or do another computation if
the buffer is full. Under PRIMOS II, output is not buffered, and
control does not return to the user until printing is complete.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

F i r s t E d i t i o n , U p d a t e 1 7 - 1

OTHER PERIPHERAL DEVICES

SPOOL$

r

Purpose

SPOOL$ accesses the spool queue.

Usage

DCL SPOOL$ ENTRY(FIXED BIN(15), CHAR(*), FIXED BIN(15), CHAR(80),
CHAR(*), FIXED BIN(15), FIXED BIN(15));

CALL SPOOL$ (key, name, namlen, info, buffer, buflen, code);

Parameters

key

INPUT. Indicates a user option. Possible values are:

name

Copy named file into queue,
pathname of the file to be
s t r i n g .

The name argument holds the
queued as a fixed - l eng th

Make a queue entry and open a data file on the file unit
given in info(2). This gives the program write access
to the file for printing, but the program loses control
of the file when it is closed.

Modify the spool queue entry identified by the request
number in info(8-10). This queue entry must belong to

p r i v i l e g e dthe calling user or a
access r ights.

user who has queue

Close the file on unit info(2), update the queue entry
for that request number, (in elements 8 -10 of info), to
record the file size, and reactivate a local despooler
that matches the request attributes.

INPUT. If key is 1, indicates the pathname of the file to be
queued. If key is 2, indicates the name to appear on the header
page.

r
r 7-9 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

namlen

INPUT. Length of name, in characters. If key is 1, name can be
from 1 to 160 characters. If key is 2, name can be from 0 to 32
characters.

i n fo

INPUT. Information array of 40 16-bit halfword elements, as
fo l lows:

1 R e s e r v e d .

2 If key is 2, open print file on this unit. A value of 0
implies that SPOOL$ should select a free file unit.
This halfword returns the number of the file unit
opened.

3 Pr in t op t ion ha l fword . Spec ifies p r in te r and p lo t te r
information, as shown below. Corresponding PRIMOS
command level options appear in parentheses.

B i t M e a n i n g

1 Use FORTRAN-f ormat mode (-FTN) . Column 1 of
each data l ine holds a format contro l
character; the printed data starts in column
2. Refer to the Forms Control Mode section of
the O$AL04 or O$AL06 description earlier in
this chapter for a list of these codes.

2 R e s e r v e d .

3 Generate line numbers at left margin (-LNU).

4 Suppress header page (-NOH).

5 S u p p r e s s fi n a l p a g e e j e c t a f t e r p r i n t i n g
(-NOE).

6 Suppress format control mode (-NOF).

7 Use raster plot mode (-PLOT) . info (7) is the
raster size.

8 Defer printing to time specified in info (11)
(-DEFER).

9 R e s e r v e d .

10 Use the logical destination name specified in
info (13-20) .

F i r s t E d i t i o n , U p d a t e 2 7 - 1 0

S P O O L $ O T H E R P E R I P H E R A L D E V I C E S

11 Replace name with info(21-28) (-AS).

1 2 S p o o l t h e n u m b e r o f c o p i e s s p e c i fi e d i n
info(29) (-COPIES).

13 Use COBOL-format mode (-COBOL). This is
identical to FORTRAN-format mode except that
the data to print begins in column 3 of each
line. Refer to the Forms Control Mode section
of the O$AL04 or O$AL0 6 description earlier in
this chapter for a description of these codes.

1 4 S u p p r e s s p a g e h e a d e r f o r m a t . T h i s i s
i d e n t i c a l t o t h e d e f a u l t p r i n t f o r m a t
(pagination mode) except that the normal
header line on each page is omitted.

15 Inform user when printing is done (-NOTIFY).

16 Extended array used. This bit must be set if
any of the control bits in info(30-40) are
used.

4-6 Form type; 6 ASCII characters, blank filled (-FORM).
This field is treated as a device attribute when adding
or modifying a request in a Rev. 21 spool queue.

7 Plot raster scan size (plot only). This represents the
number of halfword/raster scan.

8-10 If key is 3 or 4, input the request number to be
modified or closed as a decimal string (use of the
prefix PRT, while still supported at Rev. 22, is not
recommended). For other keys, returns the request
number of the new spool queue entry.

11 Deferred print time as a binary value of minutes past
midnight (-DEFER). If the time given is earlier than
the current time, the request is deferred to the given
time on the following day. Significant only if bit 8 of
info(3) is set.

12 Size of request, returned if key is 1. This is the size
of the file, in records, multiplied by the number of
copies to be printed; 327 67 is the maximum size.

13-20 Logical destination name when key is 1, 2, or 3, blank
filled (-ATT) . Significant only if bit 10 of info (3) is
set. This field is treated as a device attribute when
adding or modifying a request in a Rev. 21 spool queue.

r
r 7 - 1 1 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

21-28 Substitute filename to be used in banner page, blank
filled (-AS). Significant only if bit 11 of info (3) is
se t .

2 9 Number of copies to print when key is 1, 2, or 3
(-COPIES) . Significant only if bit 12 of info (3) is
set. If this bit is not set, only one copy is printed.

The remaining 11 elements are for the extended array. If the extended
array is used, bit 16 of info(3) must be set.

30 Extended print option halfword, with bit descriptions as
shown below.

B i t M e a n i n g

1 Use spool queue on disk identified by info (31)
(-DISK).

2 I f k e y i s 1 , 2 , o r 3 , t r e a t r e q u e s t a s
priority (-RUSH). Only privileged users can
use this bit.

3 If key is 3, cancel priority of request. Only
privileged users can use this bit.

4 R e s e r v e d .

5 Use spool queue on network node identified by
info(35-37) (-ON).

6 S u p p r e s s fi l e i n f o r m a t i o n o n h e a d e r p a g e
(-SFI).

7 Tr u n c a t e l i n e s l o n g e r t h a n d e fi n e d p r i n t e r
width (-TRU).

8 If key is 3, cancel defer time.

9 Inh ib i t overpr in t ing (-NOP, -CRLF) .

10 Use PostScript procedure named in info(32-34)
(-PROC).

11 If key is 1, suppress copying of data file
(-NOCOPY).

12-16 Reserved.

F i r s t E d i t i o n , U p d a t e 2 7 - 1 2

OTHER PERIPHERAL DEVICES

31 Logical disk number of disk holding spool queue to which
request is to be added. Significant only if bit 1 of
info(30) is set. If the disk is on the local system,
the disk information is ignored and the request is added
to the local queue. If the disk is on a remote system
and holds a pre-Rev. 21 spool queue, the request will be
added to that queue. If the disk is on a remote system
but does not hold a pre-Rev. 21 spool queue, the spooler
will attempt to add the request to a Rev. 21 queue on
the remote system.

32-34 PostScript procedure name for laser pr inters support ing
the PostScript language. Significant only if bit 10 of
info (30) is set.

35-37 Name of network node on which the spool queue is to be
accessed (-ON) . Significant only if bit 5 of info (30)
is set. A single call to SPOOL$ cannot specify both a
disk and a node name.

38-40 Reserved.

b u f f e r

SCRATCH. If key is 1, this is the data buffer area used to copy
the file. It is used as both an input and output buffer, and must
be at least 40 16-bi t hal fwords long. Copy t ime is inversely
proport ional to buflen size.

b u fl e n

INPUT. Length of buffer in halfwords. This should be at least 300
halfwords. A multiple of 1024 gives the best performance.

code

OUTPUT, Standard error code

7-12a First Edition, Update 1

S U B R O U T I N E S , V O L U M E I V ^ J

L o a d i n g a n d L i n k i n g I n f o r m a t i o n y

V-mode and I-mode: Load VSPOO$.BIN
Code in SP$LIB.RUN.

V-mode and I-mode with unshared libraries: Load VSPOO$.BIN.
Code in SP$LIB.RUN.

R-mode: Not available.

~ >

~ >

F i r s t E d i t i o n , U p d a t e 1 7 - 1 2 b

OTHER PERIPHERAL DEVICES

SP$REQ

Purpose

SP$REQ places a file in a spool queue and handles requests issued with
the SPOOL command.

Usage

DCL SP$REQ (CHAR(1024) VAR, FIXED BIN(15), ENTRY(CHAR(*), FIXED
BIN(15)), FIXED BIN(31), FIXED BIN(15), FIXED BIN(15));

CALL SP$REQ (in_string, op_mode, entry_var, rqst_no, ret_info, code);

Parameters

in_s t r i ng

INPUT. Command argument string composed of the same arguments as
those applicable to the SPOOL command. FORTRAN programmers can
build the string from a structure of fixed-length substrings. Any
number of spaces is permitted between arguments in this string.

op_mode

INPUT. Output mode. Possible values are:

0 Normal terminal output.

1 No terminal output (for most program call uses).

2 Output via supplied routine (for applications requiring
special treatment of output).

entry_var

INPUT. Entry required when op_mode is 2. The entry variable must
refer to a routine with a calling interface with a fixed character
string and a bin(15) byte count. The string must never exceed 80
characters. If op_mode is 0 or 1, this argument is ignored. Refer
to the Discussion section for more information about this argument.

7 - 1 2 c F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

r qst_.no

OUTPUT. Returned request number from operations that add a new
request to the spool queue.

r e t _ i n f o

OUTPUT. Returned information, depending on action requested. When
a file is copied to the queue, this argument returns the total size
of the request (file size multipl ied by the number of copies).
When a file is opened with the -OPEN option, this argument returns
the fi le uni t number. For a l l o ther act ions, the argument is
i g n o r e d .

code

OUTPUT. Standard error code.

Example

The following PL/I statement shows how to call SP$REQ. Because op_mode
is 0, the terminal displays any error message text. The reference to
TNOU is optional in this case.

CALL SP$REQ ('FILEl -ftn -cop 2', 0, TNOU, regno, file_size, code);

D iscuss ion

SP$REQ handles all user requests issued with the SPOOL command, as
well as any requests by user programs to place a file in the spool
queue. If op_mode is 0 or 1, entry_var can be 0.

SP$REQ interprets control codes embedded in files when queued entries
are printed. Possible control codes are shown below.

F i r s t E d i t i o n , U p d a t e 2 7 - 1 2 d

OTHER PERIPHERAL DEVICES

^ ^ C h a r a c t e r I n t e r p r e t a t i o n

r
r

000 000 header Set a new page header and reset the page number
count. The header string is supplied after the
two-byte code. This forces pagination mode and
causes a page eject. Margins are reset to
their default values, as defined in the
environment file.

000 header Same as above.

0 0 1 0 0 0 E n t e r n o - f o r m a t m o d e .

001 001 Ente r FORTRAN- fo rmat mode.

0 0 1 0 0 2 E n t e r C O B O L - f o r m a t m o d e .

0 0 1 0 0 3 E n t e r p a g i n a t i o n m o d e .

001 004 Enter no-header mode. This is the same as
pagination mode, except that no page header is
pr in ted .

001 005 n Enter raster plot mode. The following
characters hold a decimal count of words to
p r i n t .

001 036 text Same as 000 001, except that the page counter
is not reset.

002 001 n Set left margin to column number given as a
decimal string after code.

0 02 002 n Set right margin to column number given as a
decimal string after code.

002 003 n Set top margin to line number given as a
decimal string after code.

002 004 n Set bottom margin to line number given as a
decimal string after code.

002 005 Wrap around text if line exceeds paper width.

002 006 Truncate l ines that exceed paper width.

003 n Skip to EVFU channel defined by second byte.
(n) must be in the range of 1 to 12 inclusive.

7 - 1 2 e F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

002 000 text Set the printer characteristics as specified
by text, which may be in mixed cases. The
possible values of text are:

SET_PORTRAIT

SET_LANDSCAPE

SET_PAPER_BIN n

SET.J'ONT fontname

Print paper in portrait.
A printer is printing
in portrait when it prints
text across the shorter
width of the paper.

Print paper in landscape.
A printer is printing in
landscape when it prints
text across the longer
width of the paper.

For laser printers or other
printers that use more than
one paper bin. Selects the
paper bin specified by n,
where n can range from
1-9. Manual feed of
paper is supported by
MANUAL.

Select the font specified by
fontname, where fontname
is a string of up to 32
characters. The string
cannot contain spaces.

Loading and Linking Information

V-mode and I-mode with unshared

R-mode: Not supported.

l ibrar ies: Load VSPOO$.BIN
Code in SP$LIB.RUN.

First Edition, Update 2 7-12f

SUBROUTINES, VOLUME IV

PRINTER/PLOTTERS

The printer/plotter subroutines are used to drive and control the
Versatec printer/plotter. The subroutines are 0$AL14 and T$VG.

r

7 - 1 2 g F i r s t E d i t i o n , U p d a t e 1

SUBROUTINES, VOLUME IV

F i r s t E d i t i o n , U p d a t e 1 7 - 1 2 h

~ >

V

^

~ >

OTHER PERIPHERAL DEVICES

0$AL14

Purpose

0$AL14 provides the IOCS interface to the Versatec printer. Because
0$AL14 is in R-mode only, the calling program must be either FTN (as in
the Usage description below) or PMA.

Usage

INTEGER*2 unit
INTEGER*2 buffer(1)
INTEGER*2 hwcnt
INTEGER*2 altrtn

CALL 0$AL14 (unit, buffer(1), hwcnt, altrtn)

Parameters

u n i t

f INPUT. Ind ica tes the l i ne p r in te r un i t number, w i th the fo l low ing
possible values:

0 P R O , fi r s t c o n t r o l l e r

1 P R 1 , fi r s t c o n t r o l l e r

2 P R 2 , s e c o n d c o n t r o l l e r

f 3 P R 3 , s e c o n d c o n t r o l l e r

bu f fe r (1)

INPUT. The name of the array from which data is to be moved.
Handling of the buffer turns on the first character in the buffer.
See Discussion below.

hwcnt

INPUT. Number of halfwords to be transferred.

a l t r t n

r INPUT. A parameter not used by th is rout ine, but mainta ined forcoding purposes.

f 7 - 1 3 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V 0 $ A L 1 4

Discussion

The action taken by 0$AL14 depends upon the data in the buffer and the
current vertical control mode (first character of buffer).

0$AL14 has three vertical control modes:

1. Forms control

2. Header line and pagination control

3. No-control

The default mode is forms control. 0$AL14 checks the first character
in the data buffer for a .SOM. (ASCII '001). This character signifies
a change in the control mode.

If the first character is a .SOM., 0$AL14 makes a change in control
mode, determined by the character following the .SOM.:

0 0 0 E n t e r n o - c o n t r o l m o d e .

0 0 1 E n t e r c o n t r o l m o d e .

036 New header line but do not reset page count.

037 Enter new page size specified by the 16-bit number
contained in the next computer halfword.

All others Enter header control mode.

When entering header control mode, the characters following the .SOM.
are stored internally in 0$AL14 for use as the header line.

All change of mode commands cause a page eject before any further
act ion.

If the first character is not a .SOM., the line is printed according to
the current vertical control mode. These three mode descriptions
f o l l o w.

F i r s t E d i t i o n 7 - 1 4

0 $ A L 1 4 O T H E R P E R I P H E R A L D E V I C E S

Forms Control: In this mode, the first character in a buffer is never
printed but is used for forms control. The character interpretations
are:

0 S k i p o n e l i n e .

1 E j e c t t o t o p o f n e x t p a g e .

+ P r i n t o v e r l a s t l i n e (i f p r i n t e r m o d e l a l l o w s)

O t h e r N o a c t i o n .

Header Line and Pagination: In this mode 0$AL14 permits a header line
followed by three blank lines, followed by 56 text lines. The header
line is 42 characters followed by a page count which is kept
automatically by 0$AL14 when in this mode.

No-control: In this mode no automatic actions are taken except that
any line containing a form-feed character will cause a page eject with
no further action.

Load information: This subroutine calls T$VG.

Loading and Linking Information

FTNLIB — R-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

7 - 1 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

T$VG

Purpose

T$VG moves raw data from a buffer and prints the data on the Versatec
pr inter v ia a control ler designed for use with the Versatec
p r i n t e r / p l o t t e r .

Usage

DCL T$VG ENTRY(FIXED BIN(15), PTR, FIXED BIN(15),
FIXED BIN(15), FIXED BIN(31));

CALL T$VG (physical_unit, addr(buffer), nhwds,
instruct ion, status);

Parameters

phys ica l -un i t

INPUT. Currently always 0, since the controller supports only one
device.

addr(buffer)

INPUT. Pointer to the address of user's buffer,

nhwds

INPUT. The number of halfwords in the buffer. The maximum is 512.

i n s t r u c t i o n

INPUT. A number from 0 to 10 that specifies an action that the
device is to take. These instructions are described in detail in
the Discussion that follows.

status

OUTPUT. A two-halfword array. Device status is returned in
status (2) . status is returned only on a status request
i n s t r u c t i o n .

F i r s t E d i t i o n 7 - 1 6

T $ V G O T H E R P E R I P H E R A L D E V I C E S

The interpretation of the bits that are set in status(2) is as
f o l l o w s :

B i t M e a n i n g

1 A l w a y s 0 .

2 I f se t (=1) , then paper i s low.

3 I f r e s e t (= 0) , t h e n p r i n t e r / p l o t t e r i s r e a d y.
Otherwise, pr inter/plot ter is not ready.

4 I f r e s e t (= 0) , p r i n t e r / p l o t t e r i s o n l i n e .
O t h e r w i s e , p r i n t e r / p l o t t e r i s o f fl i n e .

5 - 1 6 A l w a y s 0 .

D i s c u s s i o n

Pr in te r /P lo t te r Ins t ruc t ions : The ins t ruc t ion parameter supp l ies da ta
affect ing forms control and mode control (Pr int mode, Plot mode,
Simultaneous Print/Plot mode), as follows:

Return pr in ter /p lo t ter s tatus in s tatus (2) . The
contents of the status vector, status, are described
in the ca l l ing sequence descr ip t ion. T$VG wai ts
until the output buffer is empty or until there is a
timeout before returning status.

E n d - o f - t r a n s m i s s i o n . T h i s i n s t r u c t i o n i n i t i a t e s a
print cycle and a paper advance. If the paper on
the pr in ter /p lo t te r i s ins ta l led in ro l l fo rm, th is
ro l l i s advanced e igh t inches; i f the paper is
fanfolded, it is spaced to the top of the next form.

Reset. The reset instruction clears the buffer and
in i t i a l i zes a l l l og i c i n t he p r i n te r / p l o t t e r.

Form feed. The form feed init iates a print cycle
and a paper advance.

If the paper on the printer/plotter is installed in
roll form, the paper is advanced 2-1/2 inches; If
the paper is fanfolded, it is advanced to the top of
the next form.

Clear buffer.

Reserved.

7 - 1 7 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV T$VG

Print the contents of buffer
see below.)

(Print mode only

Make a plot, using the contents of buffer
mode only — see below.)

(P l o t

Simultaneous print/plot PRINT. (SPP mode only —
see below.)

Simultaneous print/plot PLOT
be low.)

(SPP mode only — see

10 Return status of output queue in status (2.) I f
there is no room for the number of hal fwords
specified by the parameter nhwds, set status (2) to
0. If there is room for the number of halfwords
specified by nhwds, set s tatus(2) to a nonzero
v a l u e .

Print Mode: The Versatec printer/plotter may be operated as if it were
a l ine printer. The printer/plotter accepts 6- or 8-bit ASCII code.
Control commands are transmitted by using the instructions described
for the calling sequence or by transmitting the following ASCII control
codes:

ASCII Code
(Octa l)

' 0 0 4

'014

'012

Meaning

End of transmission.

Form feed.

Line feed. The transmission of the (LF) code causes
a print cycle and a paper advance of one line,
except when the 012 code follows either the printing
of a full buffer or a carriage return (015) .

015 Carriage return. A (CR) code causes a print cycle
and a paper advance of one line, provided the buffer
has at least one character entered and provided the
buffer is not full.

When the 8-bit (128-character) ASCII character set is used,
no ASCII control codes.

t h e r e a r e

P lo t Mode : The p r in te r /p lo t te r pe r fo rms p lo t ope ra t i ons tha t a re
standard to all printer/plotter devices connected via the controller to
the Prime computer. Plot data consists of 8-bit, binary, unweighted
bytes. Each dot that is plotted at the printer/plotter corresponds to
a single bit in the buffer. If bit is 1, a black dot is plotted at the

F i r s t Ed i t i on 7-18

T$VG OTHER PERIPHERAL DEVICES

point corresponding to the bit position in the buffer. Bit 1 of a
memory halfword (2 bytes) is the most significant (leftmost) bit, and
bit 16 of memory halfword is the least significant (rightmost) bit.

Simultaneous Print/Plot (SPP) Mode: SPP mode operation permits direct
overlay of character data which is generated by an internal matrix
character generator, with plotting data, which is generated on a
bit-to-dot correspondence. The SPP mode is an optional feature on some
printer/plotters. The SPP process makes use of both a print buffer and
a plot buffer, both specified in calls to T$VG. For example, using the
Versatec Printer/Plotter Model UOOA in SPP mode, the SPP operation
consists of first, placing up to 132 ASCII characters in the PRINT
buffer (Instruction = 8); and then placing 128 bytes of plot data in
the buffer (Instruction = 9) ten times. When the plot data is
transmitted to the printer/plotter, the plot buffer is scanned, and a
single row of dots, corresponding to the binary content of the plot
buffer, is printed. During the scanning process, the print buffer is
also scanned. The corresponding dots of each print character are OR'd
with the plot buffer output; thus an overlay is formed consisting of
the printed and plotted data. Since the vertical height of an ASCII
character for the Model UOOA Printer/Plotter is ten raster scans, the
user must make ten calls to plot data before the print buffer is
completely printed and ready for new data. Table 7-2 shows the number
of raster scans per print line for the various models of Versatec
p r i n t e r / p l o t t e r o p t i o n a l l y a v a i l a b l e w i t h P r i m e c o m p u t e r
configura t ions .

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

Caution

For SPP mode, do not attempt to transfer more than the maximum
number of characters to the print buffer.

SPP mode requires a series of calls to the T$VG driver. For
instance, in the example given, each print instruction was
followed by ten plot instructions. Do not interrupt such a
sequence with other instruct ions, because pr inter/plot ter
output will be incorrect.

7-19 First Edition

S U B R O U T I N E S , V O L U M E I V T $ V G

Table 7-2
Maximum Buffer Length for Versatec Printer/Plotters

PRINT
PLOT No. Scans/Print Lines

Model B i t s Bytes C h a r s . 6 4 Chars. 96 or 128 Chars.

220a 560 70 80 (70 in spp) 8 1 0
1100a 1024 128 132 1 0 1 2
1600a 1600 200 100 2 0 2 0
2000a 1856 232 232 1 0 1 2
2160a 2880 360 180 2 0 2 0

F i r s t E d i t i o n 7 - 2 0

OTHER PERIPHERAL DEVICES

CARD PROCESSING SUBROUTINES

Card-reader subroutines drive and control serial and parallel interface
card readers.

Card Reading Operation: The user must insert the card deck in the card
reader and give the command:

ASSIGN CRn

n =0 or 1 for the device sub-unit number

The user then fills the input buffer from the card reader by calling
one of the following subroutines:

• I$AC03 or I$AC15 for parallel interface cardreaders
• I$AC0 9 for serial interface cardreaders
• T$CMPC or T$PMPC (from the operating system library)

Normally a user does not call these directly, but instead calls
an I$Axx subroutine, which itself calls a T$xxxx subroutine.

The user may issue a status request call to check if the input buffer
is empty. If the buffer is empty, the online status bit (bit 9 in the
status word) is reset.

These card-reading subroutines, as well as the card-writing subroutines
and card-code-translator subroutines, are described on the following
pages.

Note

Under PRIMOS II, the card reader is never offline

7 - 2 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

l$AC03

Purpose

Reads ASCII input from the parallel interface card reader. Because
this subroutine is in R-mode only, the calling program must be either
FTN (as in the Usage description below) or PMA.

Usage

INTEGER unit
INTEGER buffer(1)
INTEGER hwcnt
INTEGER altrtn

CALL I$AC03 (unit, buffer(1), hwcnt, altrtn)

Parameters

u n i t

INPUT. The physical unit, or device, from which data is to be
moved:

0 C R O , fi r s t c o n t r o l l e r

1 C R l , s e c o n d c o n t r o l l e r

bu f fe r (1)

OUTPUT. Name of data area to receive input from card reader,

hwcnt

INPUT. Number of halfwords to be transferred,

a l t r t n

INPUT. Alternate return for FORTRAN programs calling this
subroutine in case of end of file or other error.

F i r s t E d i t i o n 7 - 2 2

I $ A C 0 3 O T H E R P E R I P H E R A L D E V I C E S

Discussion

Card Format: Cards are expected to be in 02 9 format. '026' cards may
be read by preceding the deck by a card containing '$6' in columns 1
and 2. The conversion done for '026' cards is shown below.

Card Code Converted to
(026 Symbol) (Character)

#

% (

<)

e

The driver can be switched back to '029' format by '$9' in columns 1
and 2.

Load Information: This subroutine calls T$CMPC.

Loading and Linking Information

FTNLIB — R-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

7 - 2 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

l$AC09

Purpose

The subroutine I$AC0 9 reads ASCII input from a serial interface card
reader.

Usage

INTEGER*2 unit
INTEGER*2 buffer(1)
INTEGER*2 hwcnt
INTEGER*2 altrtn

CALL I$AC0 9 (unit, buffer, hwcnt, altrtn)

Parameters

u n i t

INPUT. The physical unit, or device, from which data is to be
moved:

0 C R O , fi r s t c o n t r o l l e r

1 C R l , s e c o n d c o n t r o l l e r

buffer (1)

OUTPUT. Name of data area to receive input from card reader,

halfword-count

INPUT. Number of halfwords to be transferred.

a l t r t n

INPUT. Alternate return for FORTRAN programs calling this
subroutine in case of end of file or other error.

F i r s t E d i t i o n 7 - 2 4

I $ A C 0 9 O T H E R P E R I P H E R A L D E V I C E S

Discuss ion

I$AC09 translates card codes to characters in memory as follows

Card Code Converted to
(026 Symbol) (Character)

Card codes read are either 02 6 or 02 9. The last card in the deck is
• Q..

Errors: The ERRVEC(3) may have the fol lowing octal values. (See
Appendix B for a discussion of ERRVEC.) Combinations are possible.r

' 2 0 0 O n l i n e

' 4 0 I l l e g a l A S C I I

' 2 0 D M X o v e r r u n

' 4 H o p p e r e m p t y

' 2 M o t i o n c h e c k

' 1 R e a d c h e c k

Load Information: I$AC09 calls F$AT to fetch the arguments.

Loading and Linking Information

FTNLIB — R-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

7 - 2 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

l$AC15

Purpose

Reads and interprets (prints) a card from a parallel interface card
reader. Because this subroutine is R-mode only, the calling program
must be either FTN (as in the Usage description below) or PMA.

Usage

INTEGER*2 unit
INTEGER*2 buffer(1)
INTEGER*2 hwcnt
INTEGER*2 altrtn

CALL I$AC15 (unit, buffer(1), hwcnt, altrtn)

Parameters

u n i t

INPUT. The physical unit, or device, from which data is to
be moved:

0 C R O , fi r s t c o n t r o l l e r

1 C R l , s e c o n d c o n t r o l l e r

b u f f e r (1)

OUTPUT. Name of data area to receive data from card reader

hwcnt

INPUT. Number of halfwords to be transferred.

a l t r t n

INPUT. Alternate return for FORTRAN programs calling this
subroutine in case of end of file or other error.

F i r s t E d i t i o n 7 - 2 6

I $ A C 1 5 O T H E R P E R I P H E R A L D E V I C E S

Discussion

Load Information: This subroutine calls T$PMPC.

Loading and Linking Information

FTNLIB — R-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

7 - 2 7 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

T$CMPC

Purpose

The T$CMPC routine is the raw data mover that transfers information on
a card from the MPC card reader to the user's space. T$CMPC is called
by the IOCS card-reader driver I$AC03. The user normally reads cards
under program control using either FORTRAN READ statements or a call to
I$AC03. However, it is possible to call T$CMPC directly.

Usage

DCL T$CMPC ENTRY(FIXED BIN(15), PTR, FIXED BIN(15), FIXED BIN(15),
FIXED BIN(31);

CALL T$CMPC(physical_unit, addr(buffer) , count, instr,
s ta tus) ;

Parameters

physica l_uni t

INPUT. Device from which data is to be moved:

0 C R O , fi r s t c o n t r o l l e r

1 C R l , s e c o n d c o n t r o l l e r

addr(buffer)

INPUT. A pointer to a buffer that is to hold the information from
a card being read in the card reader.

count

INPUT. The number of halfwords to be read from the current card.

i n s t r

INPUT. An octal-code instruction needed by the card reader. Valid
instructions are:

F i r s t E d i t i o n 7 - 2 1

T $ C M P C O T H E R P E R I P H E R A L D E V I C E S

I n s t r u c t i o n M e a n i n g

100000 (octal) Return status.

40000 (octal) Read card in ASCII format.

60000 (octal) Read card in binary format.

100001 (octal) Return status of hardware.

status

OUTPUT. A three-halfword vector:

status (1) Not used.

s t a t u s (2) C a r d - r e a d e r s t a t u s : I f s t a t u s i s e x p l i c i t l y
requested by instr ('100000), this halfword returns a
value indicating the state of buffer (not of the
hardware). Otherwise the status bits returned are
defined as follows:

Octal Value Condit ion

200 Online

40 Illegal ASCII

20 DMX overrun

4 Hopper empty

2 Motion check

1 Read check

status (3) Number of halfwords moved.

Example: The following FORTRAN example reads an 8 0-character card of
ASCII data and places the contents in CARDS.

40 DO 70 I = 1, 23
50 CALL T$CMPC (0, LOC(CARDS), 40, :40000, STATUS)

C Now, save "CARDS" contents,
C either by printing as line records (0$ALxx, etc.)
C or by backing up the card deck (0$ACxx, etc.):

60 CALL 0$xxxx./* ...But why not save on disk or tape?
70 CONTINUE

7 - 2 9 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V T $ C M P C

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

F i r s t E d i t i o n 7 - 3 0 * ^ ^

OTHER PERIPHERAL DEVICES

O$AC03

Purpose

O$AC03 punches output to the parallel interface card punch. Because
this subroutine is in R-mode only, the calling program must be either
FTN (as in the Usage description below) or PMA.

Usage

INTEGER*2 unit
INTEGER*2 buffer(1)
INTEGER*2 hwcnt

CALL O$AC03 (unit, buffer(1), hwcnt)

Parameters

u n i t

INPUT. Card punch sub-unit number:

0 C R O , fi r s t c o n t r o l l e r

1 C R l , s e c o n d c o n t r o l l e r

b u f f e r (1)

INPUT. Name of data area supplying output to be punched,

hwcnt

INPUT. Number of halfwords to be punched.

D i s c u s s i o n

Load Information: This subroutine calls T$PMPC.

Loading and Linking Information

FTNLIB
SVCLIB

R-mode
R-mode (maintained for PRIMOS-II)

7-31 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

0$AC15

Purpose

Punches output to the parallel interface card punch and prints on card.
Because this subroutine is in R-mode only, the calling program must be
either FTN (as in the Usage description below) or in PMA.

Usage

INTEGER*2 unit
INTEGER*2 buffer(1)
INTEGER*2 hwcnt
INTEGER*2 altrtn

CALL 0$AC15 (unit, buffer(1), hwcnt, altrtn)

Parameters

u n i t

INPUT. Card punch sub-unit number:

0 C R O , fi r s t c o n t r o l l e r

1 C R l , s e c o n d c o n t r o l l e r

bu f fe r (1)

INPUT. Name of data area supplying output to be punched,

hwcnt

INPUT. Number of halfwords to be punched,

a l t r t n

INPUT. Alternate return for FORTRAN programs calling
subroutine in case of end of file or other error.

t h i s

First Edition 7-32

0 $ A C 1 5 O T H E R P E R I P H E R A L D E V I C E S

Discussion

Load Information: This subroutine calls T$PMPC.

Loading and Linking Information

FTNLIB — R-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

7 - 3 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

T$PMPC

Purpose

T$PMPC is the raw data mover for the card punch. It is called by
O$AC03, 0$AC15, and I$AC15, the card punch drivers. These routines may
also be called by the user.

Usage

DCL T$PMPC ENTRY(FIXED BIN(15), PTR, FIXED BIN(15),
FIXED BIN(15), FIXED BIN(31));

CALL T$PMPC (physical_unit, addr(buffer), count,
inst, status);

Parameters

physica l_uni t

INPUT. Device from which data is to be moved:

0 C R O , fi r s t c o n t r o l l e r

1 C R l , s e c o n d c o n t r o l l e r

addr(buffer)

INPUT. A pointer to a buffer supplying the data output to the card
reader. Data is packed two characters per halfword. In binary
mode, card punches are mapped into a 16-bit halfword as follows:

B i t Punch Row

1 - 4 N o t u s e d

5 1 2

6 1 1

7 - 1 6 0 - 9

F i r s t E d i t i o n 7 - 3 4

T$PMPC OTHER PERIPHERAL DEVICES

count

INPUT. The number of halfwords to punch on a card from buffer,

i n s t r

INPUT. An instruction needed by the card punch. Instructions are

r
r

Bit Set Ins t ruc t i on

1 '100000

3 '20000

4 '10000

5 '4000

6 '2000

7 '1000

Meaning

Read status.

Process in binary mode.

Feed a card.

Read a card.

Punch a card.

Print a card.

8 ' 4 0 0 S t a c k a c a r d .

To punch a card, instr would be an octal 12400 meaning:

1. Feed a card.

2. Punch a card.

3. Stack a card,

s t a t u s

OUTPUT. Three halfword status vector:

status(1) Not used.

status(2) Device status returned for a read request (instr
'4000) :

Va lue C o n d i t i o n

'200 Online

'4 Illegal code

'10 Hardware error

' 4 Operator intervention required

status (3) Number of halfwords read.

7-35 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

MAGNETIC TAPES

The magnetic tape subroutines drive and control 7-track and 9-track
magnetic tape devices. Their functions are summarized in Table 7-3.

Table 7-3
Functions of Magnetic Tape Subroutines

9-Track

C$M05 Control for 9-track ASCII and binary.
C$M13 Control for 9-track EBCDIC.
O$AM05 Write ASCII.
I$AM05 Read ASCII.
O$BM05 Write binary.
I$BM05 Read binary.
0$AM13 Write EBCDIC.
I$AM13 Read EBCDIC.

7-Track

C$M10 Control for 7-track ASCII and binary.
C$M11 Control for 7-track BCD.
0$AMlO Write ASCII.
I$AM10 Read ASCII.
O$BM10 Write binary.
I$BM10 Read binary.
0$AM11 Write BCD.
I$AM11 Read BCD.

Note

For descriptions of the subroutines listed in Table 7-3, see
Appendix E "Other Obsolete Subroutines". The subroutine T$MT
has replaced all of these subroutines except 0$AM13 and I$AM13.

First Edition, Update 2 7-36

OTHER PERIPHERAL DEVICES

T$MT

Purpose

The T$MT routine is the raw data mover that moves information from
magnetic tape to user address space, or from the user space to tape.
T$MT also performs other tape operations, such as backspacing, forward
spacing, and densi ty set t ing. I f T$MT is cal led wi thout the code
argument, and an error condition is encountered, T$MT exits to the user
command level, rather than to the calling program. If T$MT is called
with the code argument, T$MT returns the appropriate error code to the
cal l ing program.

T$MT is used by several tape controllers. Table 7-4 gives version
numbers and controller IDs for the different drive types. Instructions
associated with particular versions are indicated in the Usage section
below.

Table 7-4
Cont ro l le r Id

Version Device ID Cont ro l le r Drive Type

0 '014 2081 Pertec
1 '114 2081 Kennedy, separate formatter
2 '214 2269/2270 Kennedy, two-board controller
3 '314 2023 Telex(1600/6250 bpi)
4 '013 2301 Cipher Streamer (1600/3200 bpi)
5 '113 2047 or 6105 DEI Cartridge Drive for 2250
6 '213 2382 60-Megabyte (QIC-02) cartridge

tape controller
'313 9610 Model 4587 quad-density tape drive

Note

The Vers ion 6 car t r idge tape contro l ler per forms a l imi ted
sub-set of the normal tape drive functions for T$MT described
below, as it is designed to provide inexpensive system backup
and data storage. See further comments on Version 6 under
ins t r and s ta tv, espec ia l l y fo r how T$MT hand les inva l i d
commands to Version 6.

7-37 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

Usage

DCL T$MT ENTRY(FIXED BIN(15), PTR, FIXED BIN(15),
FIXED BIN(15), 6 FIXED BIN(15)[, FIXED BIN(15)])

CALL T$MT (physical_unit, buffno, nhw, instr, statv [, code]);

Parameters

physica l_uni t

INPUT. A sub-unit for this physical device, the magnetic tape
drive — valid numbers are (logical drive numbers) 0 through 7.

buffno

nhw

INPUT. Location of the buffer from which to read or write a record
of information. It must be an octal number. If neither a read nor
a write operation, buffno is 0.

INPUT. Number of halfwords to transfer. This number must be
between 0 and 6K halfwords.

i n s t r

INPUT. The instruction request to the magnetic tape drivers. The
following instructions are valid for all tape drivers, except where
noted.

Note

If one of the following instructions not valid for a QIC-02
drive is still submitted to a T$MT call for that cartridge tape
cont ro l le r, then T$MT sets b i t 6 in s ta tv(2) — for
Uncorrectable Error — and bit 13 in statv(4) — for Illegal
Command. T$MT then returns immediately without setting the
returned error code. (This is also true for a "Read record
backwards" instruction, the last instruction in the next list.)

O c t a l H e x a d e c i m a l M e a n i n g o f i n s t r

000040 0020 Rewind to BOT, 7- or 9-track, or QIC-02

022100 2440 Backspace one file mark, 9-track.

F i r s t Ed i t i on , Upda te 2 7 -31

T$MT OTHER PERIPHERAL DEVICES

O c t a l H e x a d e c i m a l

020100 2040

0 6 2 1 0 0 6 4 4 0

0 6 0 1 0 0 6 0 4 0

022220

020220

062200

060200

022200

020200

100000

042620

042220

042200

042600

052200

052600

2490

2090

6480

6080

2480

2080

8000

4590

4490

4480

4580

5480

5580

Meaning of instr

Backspace one file mark, 7-track.
(Not valid for Model 4587.)

Backspace one record, 9-track.

Backspace one record, 7-track.
(Not valid for Model 4587.)

Write file mark, 9-track, and
QIC-02.

Write file mark, 7-track.
(Not valid for Model 4587.)

Forward one record, 9-track, and
QIC-02.

Forward one record, 7-track.
(Not valid for Model 4587.)

Forward one file mark, 9-track, and
QIC-02.

Forward one file mark, 7-track.
(Not valid for Model 4587.)

Select transport, 7- or 9-track, or
QIC-02, and get status.

Write record, two characters per
halfword, 9-track, and QIC-02
(on QIC-02 the initial WRITE
requires up to two minutes) .

Write record, one character per
ha l fword , 9 - t rack .

Read record, one character per
ha l fword , 9 - t rack .

Read record, two characters per
halfword, 9-track, and QIC-02.

Read and correct record, one
character per halfword, 9-track.
(Not valid for Model 4587.)

Read and correct record, two
characters per halfword, 9-track.
(Not valid for Model 4587.)

7-39 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

O c t a l H e x a d e c i m a l M e a n i n g o f i n s t r

040220 4090 Wr i t e b ina ry reco rd , one
character per halfword, 7-track.
(Not valid for Model 4587.)

040620 -4190 Wr i te b inary record , two
characters per halfword, 7-track.
(Not valid for Model 4587.)

044220 48 90 Write BCD record, one character
per halfword, 7-track.
(Not valid for Model 4587.)

044620 4990 Write BCD record, two characters
per halfword, 7-track.
(Not valid for Model 4587.)

040200 4080 Read binary record, one character
per halfword, 7-track.
(Not valid for Model 4587.)

040600 4180 Read binary record, two charac
ters per halfword, 7-track.
(Not valid for Model 4587.)

044200 4880 Read BCD record, one character
per halfword, 7-track.
(Not valid for Model 4587.)

044600 4980 Read BCD record, two characters
per halfword, 7-track.
(Not valid for Model 4587.)

1 4 0 0 0 0 C 0 0 0 R e t u r n c o n t r o l l e r i d .

Note

The following instructions are valid only with certain versions
of tape controllers, as noted. If an instruction is submitted
to a controller that does not support it, T$MT returns an error
code of E$IVCM (invalid command) in code.

O c t a l H e x a d e c i m a l M e a n i n g o f i n s t r

004020 0810 Erase from current position to EOT on
tape. (Model 4587 controller)

100020 8010 Erase a 3.5 inch gap on the tape
(version 2, 3, 4, or Model 4587
c o n t r o l l e r) .

F i r s t E d i t i o n , U p d a t e 2 7 - 4 0

T$MT

r

O c t a l H e x a d e c i m a l

100040

100060

100100

100120

100140

100160

100200

100220

100300

100360

100320

100340

8020

8030

8040

8050

8060

8070

8080

8090

1 0 0 2 4 0 8 0 A 0

1 0 0 2 6 0 8 0 B 0

0 4 3 5 0 0 4 7 4 0

80C0

80F0

80D0

80E0

OTHER PERIPHERAL DEVICES

Meaning of instr

Unload. Rewind tape and place drive
offline (version 2, 3, 4
or Model 4587 controller).

Set density to 800 bpi (version 2,
3, 4, or Model 4587 controller).

Set density to 1600 bpi (version
2, 3, 4, or Model 4587 controller).

Set density to 6250 bpi (version 2,
3, 4, or Model 4587 controller).

Set density to 3200 bpi
(version 2, 3, 4, or Model 4587
c o n t r o l l e r) .

Set low speed (version 4
or Model 4587 controller).

Set high speed (version 4
or Model 4587 controller).

Re-tension tape (version
5 or 6 controller)

Erase entire tape (version 6 controller)

Go to end of data (version 6 controller)

Read record backwards (version 3
contro l ler) . As a l ready noted,
Version 6 treats this as an invalid
instruct ion, handled l ike those
from the previous list.

Set drive default density (version
Model 4587 controller)

Select buffered mode. (Model 4587
c o n t r o l l e r)

Erase to EOT. (Model 4587 controller)

Select unbuffered mode (Model 4587
c o n t r o l l e r) .

7-41 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

Note

In buffered mode, records can be lost when a write operation is
terminated abnormally. When the write operation is terminated
abnormally, an unknown number of data records may remain in the
Model 4587 tape drive buffer, and not be written to tape. This
is because the Model 4587 tape drive acknowledges receipt of a
record when it has been read into the buffer, even though it
has not yet written to tape. This problem does not occur in
nonbuffered mode, because in nonbuffered mode the tape drive
acknowledges each record only after it is written to tape.

Any of the following conditions can cause a write operation to
terminate abnormally in buffered mode:

• A warm start (bit 6 in statv(2) is set) . After a warm
start during buffered mode, you should backspace to the
last file mark, or rewind.

• A tape drive fault (bit 14 in statv(4) is set). After a
tape d r i ve fau l t , subsequen t wr i te commands a re no t
rejected, but the same fault will be returned unless the
fault condit ion is corrected.

• An "unrecoverable write error" (bit 16 in statv(4) is set) .
After an unrecoverable wri te error, al l subsequent wri te
c o m m a n d s a r e r e j e c t e d . W h e n a w r i t e f a i l s o n a n
unrecoverable error, the error is reported in the status
information for the next operation to be completed after
the fa i led wr i te operat ion. The er ror w i l l be repor ted
either in a subsequent series of write operations, or in
the first non-wri te operat ion after the control ler detects
the wr i te fa i lure.

After each write operation in buffer mode, the application
should check bit 16 of statv(4) to see if an unrecoverable
write error occurred. If this bit is not set, there has
been no error on previous write operations; the current
write operation, however, may not yet have been performed.
If bit bit 16 of statv(4) is set, an unrecoverable write
error has occurred during an earlier write operation. In
this case, the tape may be physically damaged, and the user
should restart the application on another tape.

User appl icat ions are responsib le for ensur ing that no
record loss occurs because of mode selection. To avoid
loss of records, do not run any application without knowing
which mode is currently selected. Note that the Model 4587
tape drive defaults to non-buffered mode after system boot.
It is good practice for an application always to select the
mode that i t requires before i t runs, and to reselect
non-buffered mode when it completes execution. See Using
Your Quad Density Tape Drive for more information about how
to program a Model 4587 tape drive.

F i r s t E d i t i o n , U p d a t e 2 7 - 4 2

" >

" >

T $ M T O T H E R P E R I P H E R A L D E V I C E S

s t a t v

OUTPUT. 6-halfword status vector. If this is the last argument,
then only the first three halfwords are set. If the code argument
follows, then additional halfwords may be set, depending on the
controller being used. Each of the statv halfwords are described
be low:

s t a t v (l) S t a t u s fl a g :

V a l u e M e a n i n g

1 O p e r a t i o n i n p r o g r e s s

0 O p e r a t i o n fi n i s h e d

sta tv(2) Hardware s ta tus word f rom cont ro l le r. Poss ib le va lues
are :

B i t s M e a n i n g W h e n S e t

Ver t ica l par i ty (read) er ror

Runaway tape error.

CRC error (Always 0 for Version 6 or Model 4587)

LRC error (Always 0 for Version 6 or Model 4587)

False gap or More Record Data than was requested during
a read operation

0 6 Uncorrectable error. For Model 4587, may indicate that
selected dr ive is not connected. May also indicate
condit ion signalled by bits 1, 2, 7, 14, or 15 in
statv(2), or by bits 5, 12, 13, 14, or 16 in statv(4).

0 7 R e a d - a f t e r - w r i t e e r r o r d e t e c t e d d u r i n g 7 r e t r i e s (f o r
Vers ion 6 : Read-a f te r -wr i te e r ro r) .

0 8 F i l e m a r k d e t e c t e d .

0 9 Transport is ready.

1 0 T r a n s p o r t i s o n l i n e .

11 End of tape was detected.

1 2 S e l e c t e d t r a n s p o r t i s r e - w i n d i n g .

1 3 S e l e c t e d t r a n s p o r t i s a t l o a d p o i n t (b e g i n n i n g o f
t a p e) .

7 - 4 3 F i r s t E d i t i o n , U p d a t e 2

01

02

03

04

05

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

1 4 T r a n s p o r t i s w r i t e - p r o t e c t e d (fi l e - p r o t e c t e d) ; w r i t e
commands are rejected.

15 DMX overrun or no format ter. For Model 4587, may
indicate a FIFO parity error.

16 Indicates that rewind is complete. For Versions 2 and
6 controllers, this bit has no meaning and is always 0.
For Model 4587, set while drive is erasing to EOT.

s t a t v (3) N u m b e r o f h a l f w o r d s t r a n s f e r r e d (r e a d a n d w r i t e
operat ions only) .

statv(4) Hardware status for vers ion 1, 2, and 3 contro l lers.
Bits 0 and 1 specify density of tape:

00 800 bpi

10 1600 bpi

11 6250 bpi

Other bits in statv(4) used by all controllers:

B i t s M e a n i n g W h e n S e t

05 I l legal operat ion to tape dr ive at tempted (wr i te to a
fi le p ro tec ted d r i ve) .

13 Illegal PIO command issued (OTA not defined as meant
for tape contro l ler.)

statv(4) For Version 6 controllers only:

B i t s M e a n i n g W h e n S e t

(Always set) to indicate GCR density.

Always zero.

Not used. Always zero.

Not used. Always zero.

Illegal operation to tape drive attempted (write to a
fi le p ro tec ted d r i ve) .

No cartridge present.

This is set when the controller has performed an error
correction operation on a read or write operation.

08 Read error, bad block transfer.

F i r s t E d i t i o n , U p d a t e 2 7 - 4 4

01

02

03

04

05

06

07

T $ M T O T H E R P E R I P H E R A L D E V I C E S

W ' 0 9 R e a d e r r o r , fi l l e r b l o c k t r a n s f e r .

10 Read or write aborted due to unrecoverable error.

11 A l w a y s z e r o .

1 2 A l w a y s z e r o .

13 Illegal PIO command issued (OTA not defined as meant
for tape cont ro l le r.)

14 Device fau l t or dev ice reset .

1 5 Ve r i f y f a i l u r e u p o n m a s t e r c l e a r o r p o w e r u p o f
c o n t r o l l e r .

r

r

r
r

1 6 R e c o r d n o t c o m p l e t e l y w r i t t e n o r i n c o m p l e t e r e c o r d
read. Always zero. (EOT).

statv(4) For Model 4587 only:

B i t s M e a n i n g W h e n S e t

1 - 3 I n d i c a t e d e n s i t y s e t t i n g .

100 : PE
101 : GCR
110 : NRZI
111 : DPE
011 : Default to drive panel control.

4 100 IPS selected. (When not set, 50 IPS selected.)

5 Tape operation not legal for Model 4587.

6 C u r r e n t l y i n b u f f e r e d m o d e .

7 Error Correct ion/Retr ies necessary on last Read or
W r i t e .

8-11 Unused (always 0).

12 Fatal memory error, or SCSI hung. OCP '17 needed to
c lea r e r ro r.

13 OTA not defined for Model 4587 was received and
r e j e c t e d .

14 Tape drive fault or tape drive reset.

15 DRAM degraded mode.

7 - 4 5 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

16 Wr i te opera t ion abor ted by uncor rec tab le wr i te e r ro r.
No write commands accepted until command requiring a
reverse tape movement is received and executed.

statv(5-6) Reserved.

code

OUTPUT. Spec ifies tha t the appropr ia te e r ro r code is to be
returned to the cal l ing program. code requires statv to be a
s ix -ha l fword a r ray.

The possible error codes returned are:

E$NASS Device specified in physical-unit, not assigned.

E$IVCM Inval id command (e.g. a t tempt to set dens i ty on
version 0 control ler) .

E$DNCT Device specified in physical-unit not connected, or
no con t ro l le r.

E$BNWD Invalid number of halfwords (nhw <=0 or >6144).

D iscuss ion

Magnetic tape I/O is not buffered under PRIMOS. A call to T$MT returns
immediately before the operation is complete. When the magnetic tape
operation is completed, the status flag in the user space is set to 0.
Therefore, a user program may do another computation while waiting. If
a user in i t ia tes another ca l l to T$MT before the firs t ca l l has
completed its magnetic tape operation, the second call does not return
to the user until the first magnetic tape operation has been completed.

Densi ty Select ion

It is assumed that tapes are written with one density. For versions 0
through 2 cont ro l le rs and dr ives , the user shou ld fi rs t se t th is
density with the drive control panel switches. Version 3-4 controllers
a u t o m a t i c a l l y a d j u s t t o t h e c o r r e c t t a p e d e n s i t y . Ve r s i o n 5
controllers have a set density. If density is not set automatically,
the user must manually set the drive to the right density before the
first record is read. The rest of the tape will be read (or written)
using that density. The Model 4587 returns an error if the drive is
not at Load Point (BOT) when the user attempts to change the density.

First Edition, Update 2 7-46

T $ M T O T H E R P E R I P H E R A L D E V I C E S

For example, if the user set the density to 6250 bpi with the ASSIGN
command and read the first record of a 1600 bpi tape, then the rest of
the tape would be read using 1600 bpi. If after reading that record, a
record was written onto the tape (without rewinding to the load point),
then that record would also be written at 1600 bpi. If the tape was
rewound and then a record was written, the density would be switched to
6250 bpi. Although the density setting of 6250 bpi is remembered, it
will not go into effect until a record is written at the load point.

If the user assigns a tape without specifying a density, the unit will
be left at the density from the previous use. The default density (at
system initialization time) is 1600 bpi.

Read Record Backwards

This request causes the tape to read a record while moving the tape
backwards. It is sometimes possible to read a record backwards when a
bad tape prevents reading the record in the forward direction. After
the record is read, it will be necessary to reorganize the data. The
halfwords of the record will be in reverse order. Each halfword will
have the bytes reversed. The bits within each byte will be in correct
order.

Instruction to Get Controller Id

The controller id may be used by software that intends to support all
tape drives, but takes advantage of special features that are available
only with a particular controller. For example, the ERASE command is
only available with version 2 and 3 controllers.

7 - 4 7 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

Figure 7-1 shows how buf (1) must be set up for this instruction
C140000)

9 1 6

Not Used Controller ID*

ID from Table 7-4

BUFF(2) When instr is '140000
Figure 7-1

Use of the T$MT Wait Semaphore

While waiting for an operation to complete (that is, for status-word 1
to go to 0), a process can do one of several things. It can loop while
checking the status-done word, do another operation (such as get
status), or use a wait semaphore.

Looping on a wait for statv(l) to go from 1 to 0 uses up CPU time while
the process waits for the tape operation to complete. This is not a
good practice for two reasons. First, it ties up the CPU needlessly
and slows down system performance in general. Second, it causes the
process to waste some of its time slice without doing useful work.
This will result in the process being scheduled extra time and the real
time of program execution will be longer than necessary.

This problem can be solved by using a semaphore. If the process waits
on a semaphore, the wait time is not counted against its time slice.
Therefore, as soon as the tape operation completes, the process will be
scheduled to run again to finish up its time slice.

The program T$MT contains a wait semaphore that can be used for this
purpose. This semaphore is used to queue tape requests. If the
process makes a tape request when the controller is busy with another
operation, the process is put on the wait semaphore.

When the program wants to wait for a tape operation to complete, it can
call T$MT with a request for status. Since the tape controller is
already busy with the previous operation, the process will be put on
the T$MT wait semaphore.

F i r s t E d i t i o n , U p d a t e 2 7 - 4 8

T$MT OTHER PERIPHERAL DEVICES

Since the status request is fast and doesn't affect the tape, it is a
convenient tape operation to use to provide the semaphore wait. A
scratch status vector should be used so that the status from the
original call is not destroyed.

Loading and Linking Information

FTNLIB
NPFTNLB
PFTNLB
SVCLIB

R-mode
V-mode (unshared)
V-mode
R-mode (maintained for PRIMOS-II)

Example: A FORTRAN Example of wait code is given here, preceded by the
proper data definitions for variables:

INTEGER CODE, C0DE2
INTEGER STATV(6)
INTEGER UNIT
INTEGER BUF (1024)
INTEGER XSTATV (6)

/ *
/ *
/ *

RETURN CODES
STATUS VECTOR SET BY T$MT
MAG TAPE DRIVE NUMBER (0-7)

/* OUTPUT BUFFER
/* SCRATCH VECTOR FOR WAIT

C

100

120

CALL T$MT (UNIT, LOC(BUF), ,:042620,STATV, CODE)
/*WRITE 1024

. . . / * O V E R L A P E X E C U T I O N W I T H I O

NOW WAIT FOR TAPE WRITE TO COMPLETE:

IF (STATV(l).EQ.O) GOTO 120 /* SEE IF IO IS ALREADY DONE
CALL T$MT (UNIT,LOC(0),0,:100000,XSTATV, CODE2) /*WAIT
GOTO 100

7-49 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

Error Recovery on Writing

The two error recovery schemes described here are based on different
record formats. The first algorithm can be used when records contain
only data. The other scheme requires that the records contain extra
information for error recovery.

Notes

A user cannot generate an error recovery procedure for the
QIC-02 tape drive while that drive is in use. Either the drive
itself performs such or an uncorrectable error has occurred.

The Model 4587 drive performs its own error recovery on both
reads and writes.

The following schemes are provided as alternatives to using the IOCS
routines that FORTRAN uses. The error recovery provided in the IOCS
routines correspond to that described for Simple Write Error Recovery.

Simple Write Error Recovery: The aim of the simple error recovery
program is to get by a possible bad spot on the tape by erasing part of
the tape where the error occurred and rewriting the record after that
gap.

The program does not try to rewrite the record on the same spot on the
tape even though repeated tries on the same spot may improve the tape
enough to permit the write to succeed. The tape is considered marginal
at that spot and may not be readable at a later date.

Only two controllers will erase an entire tape. The version 3
controller (MPC-3), which supports the 6250 bpi tape drives, has an
ERASE command. The QIC-02 cartridge tape drive also accepts an "Erase
entire tape" instruction ('100240 or (HEX)80A0).

The version 2, 3, and 4
('100020 or (HEX)8010)
following technique.

controllers have an "Erase 3.5 inch gap"
to erase over a badspot on a tape, using the

Program steps for write error recovery:

1. Check if error recovery is possible. Don't attempt error
recovery if the tape drive is offline or not ready, or the tape
is fi le-protected.

Erase a 3.5 inch gap on the tape:

• If a version 2, 3, or 4 controller, perform
inch gap" operation

'erase 3.5

First Edition, Update 2 7-50

T $ M T O T H E R P E R I P H E R A L D E V I C E S

• O t h e r w i s e p e r f o r m a " w r i t e f i l e m a r k " o p e r a t i o n ,
fo l lowed by per form a "backspace record" operat ion,
followed by a check that the filemark detect bit is set
in the status word.

Attempt to rewrite the record.

If the record was not written successfully, repeat steps 2 and
3 up to twenty times. Note that step 2 is done once on the
first repetition, twice on the second repetition, thrice on the
third, and so on, up to twenty retrys (a maximum of five feet
of erased tape).

Write Error Recovery with Sequence Numbers: There is a drawback to the
first scheme. Since the tape is bad at the spot where the error
recovery is being done, i t is possib le for errors to occur whi le
backspacing. For example, if the bad record has a gap in the middle of
it, the program might detect two short records when backspacing. If
the program has some way of identifying records, the program can be
sure that it has not lost position during error recovery.

One way to do this is to include a sequence number with every record.
Then when error recovery is attempted, the program backspaces two
records and then reads a record. This record should contain the
sequence number of the last good record before the error record.

Program steps for error recovery:

1 . Check i f e r r o r r ecove ry i s poss i b l e . Don ' t a t t emp t e r r o r
recovery if the tape drive is offline or not ready, or the tape
i s fi l e - p r o t e c t e d .

2. Position the tape after the last good record.

• Backspace two records. This will place the tape before
the last good record.

• Read a record and veri fy that i ts sequence number
matches the one expected for the last good record.

• If the 'good' record can't be read, then it is possible
that the tape is not posi t ioned correct ly. Backspace
several records and read those records to find the
sequence number of the last good record written.

3. Erase a 3.5 inch gap on the tape.

• If a version 2, 3, or 4 controller, perform "erase 3.5
inch gap" operation

7 - 5 1 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

• Otherwise perform a "write f i le mark" operation,
followed by perform a "backspace record" operation,
followed by a check that the filemark detect bit is set
in the status word.

4. Attempt to write the record again.

5. If the record was not written successfully, repeat steps 1-4 up
to twenty times, lengthening the gap each time.

Error Recovery on Reading

Error recovery when reading a tape involves repeatedly rereading the
record. The problem of losing position can occur when doing error
recovery. Therefore, the procedure can be improved by verifying the
sequence number each time a record is read. Note that the Model 4587
drive performs its own error recovery on both reads and writes.

Program steps for read error recovery:

1. Check that error recovery is possible. Don't attempt error
recovery if the tape drive is offline or not ready.

2. Backspace and reread the record eight times.

3. If unsuccessful, backspace eight records (or to the load point
if less than eight records away), space forward seven records
and then read the problem record. This sequence draws the tape
over the tape cleaner and could dislodge a possible dirt
p a r t i c l e .

4. Repeat steps 1-3 eight times.

F i r s t E d i t i o n , U p d a t e 2 7 - 5 2

PART III

SMLC/AMLC SUBROUTINES

Synchronous and
Asynchronous Controllers

Part III of this Volume describes the subroutines and the control block
configurations used with Synchronous and Asynchronous Controllers.

Chapter 8, containing all this information, first describes T$SLC0, the
R - m o d e s u b r o u t i n e u s e d f o r S y n c h r o n o u s M u l t i - L i n e C o n t r o l l e r s .
Thirteen Tables follow the description of T$SLC0, each giving control
b lock b i t configurat ions dependent on the key opt ion used wi th in
T$SLC0. The last two subroutines described in this chapter, ASNLN$ and
T$AMLC, are used for Asynchronous Multi-Line Controllers.

R o u t i n e F u n c t i o n

T$SLC0 Communicate with SMLC driver.

ASNLN$ Assign AMLC l ine.

T$AMLC Communicate with AMLC driver.

A S $ L S T L i s t s p e c i fi e d a s y n c h r o n o u s l i n e
c h a r a c t e r i s t i c s .

AS$LIN Return asynchronous l ine number.

AS$SET Se t asynch ronous l i ne cha rac te r i s t i c s .

NT$LTS Returns information about a PRIMOS line
used for LAN terminal service.

l - l First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

SYNCHRONOUS CONTROLLERS

This section defines the raw data mover for the assigned SMLC line.
See the System Administrator's Guide for a discussion of SMLC lines.

There can be a maximum of two synchronous controllers configured: two
MDLCs, two ICSls, or one of each. An MDLC supports up to four
synchronous lines; an ICSl supports one synchronous line. The ICSl
also provides asynchronous support on the same board. The number of
synchronous lines available depends on the controller configuration in
use. Present possible configurations are given below.

Controller 1 Controller 2 Max Synchronous Lines

MDLC(4)
MDLC(4)
MDLC(4)
MDLC(4)
MDLC(2)
MDLC(2)
ICSl
ICSl

MDLC(4)
MDLC(2)
ICSl

ICSl

ICSl

Note: MDLC(4) is a four-line MDLC; MDLC(2) is a two-line MDLC

Caution

R-mode subroutines can be called from FTN and PMA in R-mode
only. If you call an R-mode routine from a program in a
different mode, the results are unpredictable. Refer to the
FORTRAN and PMA chapters in Volume I for information on
declaring parameters in FTN and PMA, respectively.

First Edition, Update 2 1-2

SYNC/ASYNC CONTROLLERS

T$SLC0

Purpose

The SMLC driver is loaded in PRIMOS. A user program communicates with
the driver via FORTRAN-format calls to T$SLC0. The driver communicates
with the user address space via buffers in the user address space
specified by the user program. The data structure used by the driver
is a control block created by the user in the user address space. It
contains pointers to the user status buffer and to buffers containing a
message to be transmitted or set to receive a message. A separate
control block is required for each line.

Usage

INTEGER*2 key, line, block(1), nhwds

CALL T$SLC0 (key, line, LOC(block), nhwds)

Parameters

key

INPUT. Indicates the desired operation and may hold the following
v a l u e s :

1 Stop line. Only key + line required for the subroutine to
execute on this key.

2 Define control block. The block is structured as in Table
8-1. I t defines an area to store status in format ion and,
optionally, a message chain for reception or transmission.

3 Array block contains five halfwords which are to be output to
the controller. See Tables 8-2 through 8-11 for details.

4 Array block contains a halfword which is to be used as the
next data set control word. See Table 8-12 for details.

5 Array block contains two halfwords which are to be used as the
n e x t r e c e i v e / t r a n s m i t e n a b l e w o r d s . S e e Ta b l e 8 - 1 3 f o r
d e t a i l s .

8 -3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV T$SLC0

6 The calling user process will go to sleep. It will waken at
the next SMLC interrupt or after approximately one second. It
will run with a full time slice interval. The value line is
ignored, as are addr(block) and nhwds. If, however, the user
process does not own any SMLC lines, the call will return
immediately.

7 Return model number. When using this key, nhwds must equal 1.
Model number will be returned in block.

For MDLC model numbers, the value will be given in octal. The
possible model numbers and their associated protocols are the
fo l low ing .

>del Number
(Octal)

0

5646

5647

5650

5651

5652

5653

5654

Protocols

HSSMLC

BISYNC and HDLC

BISYNC and PACKET

BISYNC and 1004/UT200/7020

HDLC and 1004/UT200/7020

PACKET and 1004/UT200/7020

HDLC and PACKET

BISYNC and GRTS

l i n e

ICSl model numbers are specified in decimal. Listed below are
their model numbers, the number of synchronous or asynchronous
lines they support, and the Protocols they use.

1 Number Lines Supported Protocols
sync async

181 BISYNC
141 BISYNC

INPUT Octal line number 0-7

First Edition 1-4

T$SLCO SYNC/ASYNC CONTROLLERS

LOC(block)

INPUT. Pointer to address of user 's b lock
reside entirely within one page.

nhwds

INPUT. Number of halfwords in block.

User's block must

Loading and Linking Information

FTNLIB
SVCLIB

R-mode
R-mode (maintained for PRIMOS-II)

D i s c u s s i o n

Before calling T$SLC0 to configure a line (key = 3), a call with a key
of 7 should be made to see if the controller contains the proper
protocol and to determine what the line configuration should be. If an
error occurs dur ing in i t ia l izat ion, the fo l lowing error messages are
p r i n t e d :

No SMLCxx -(controller address)
No CONTROLLER CONFIGURED for SMLCyy (logical number)
UNDEFINED CONTROLLER ID for SMLCxx (controller address)

I t i s t h e r e s p o n s i b i l i t y o f t h e c a l l e r t o s e e t h a t
configuration is correct for the model of MDLC being used.

t h e l i n e

Timing: The user space program runs asynchronously with message
t r a n s f e r s . A c a l l t o T $ S L C 0 r e t u r n s i m m e d i a t e l y a f t e r e x e c u t i n g
w h a t e v e r c o n t r o l f u n c t i o n w a s r e q u i r e d . T h e p r o g r e s s o f t h e
communication must be monitored by the user program by examination of
the user space status buffer contents.

1-5 F i r s t Ed i t i on

S U B R O U T I N E S , V O L U M E I V T $ S L C 0

Assigning Communication Lines: The communications lines must be
assigned to a user space before they can be used. The proper command
i s :

SMLCOO
SMLC01
SMLC02
SMLC03
SMLC04
SMLC05
SMLC06
SMLC07

ASSIGN

given at the user terminal. One or more lines may be assigned to a
given user.

F i r s t E d i t i o n 8 - 6

T$SLC0 SYNC/ASYNC CONTROLLERS

Table 8-1
Key = 2 SMLC Control Block

Halfword 0

Halfword 1

Halfword 2

Halfword 3

Halfword 4

Halfword 5

Halfword 6

Last receiver/transmitter enable word sent to the
HSSMLC by the driver. (This halfword is written
into but not read by the driver.)

Bit 15 = 1
Bit 16 = 1

Bit 1
Bits 2-16

Transmitter on
Receiver on

Valid line enable order in bits 2-16
Line enable order. See Table 8-4,
Halfword 0.

Bits 1-4 Data set status mask (DSSM)
Bits 5-8 Required data set status (RDSS)
Bit 9 Set: No data set order - ignore Word 2
Bits 13-16 Data set control order (DSCO)

Note

Issue DSCO, wait for
(DS status .AND. DSSM) - RDSS,
then issue line enable order.

Spare

Pointer to top of status buffer

Pointer to bottom + 1 of status buffer

Pointer to next halfword in status buffer to
receive the status information. (This halfword is
written into but not read by the driver.)

Note

The status buffer must be completely contained in the
same page as the control block.

8 -7 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV T$SLC0

Table 8-1 (continued)
Key = 2 SMLC Control Block

Halfword 7 Bits 1-2 '01' there exists a continuation
control block

Bits 3-6 Halfword count of next block - 8
B i t 7 0
Bits 8-16 Offset in current 512 halfword page

of next block

Note

The continuation block must reside in the same page as
the control block from which it was continued.

Halfword 8 Bit 16:
1 Transmit
0 Receive

Note

If Halfword 8 is given (nhwds > 8) then at least one
DMC address pair must be given.

Halfwords 9-10
11-12
13-14
15-16

DMC start and end address pointers.
Up to four pairs may be specified to
allow for channel chaining.

Note

Transmit/receive buffers may reside in any page, but
their starting and ending address pointers must reside
in the same page.

F i r s t Ed i t i on

T$SLCO SYNC/ASYNC CONTROLLERS

Table 8-2
Key = 3 Line Configuration Control Block (Bits 10-16)

Halfword 0 B i t s 1 0 t h r o u g h 1 6 a r e c o n s t a n t f o r a l l
c o n t r o l l e r s a n d p r o t o c o l s . D e s c r i p t i o n s f o r
Bits 1 through 9 follow descriptions of these
constants.

Bit 10 Enable formatter option (BISYNC, UT200,
ICL 7020, 1004, PACKET SWITCH depending
on HSSMLC options)

Bit 11 Enable reporting of data set changes by
interrupt and status halfword.

Bits 12-14 12 13 14
i

i—Automatic Parity Enable
Parity Select 0 = odd,*
Parity Enable

Bits 15-16 15 16

■Number of bits per character

*If automatic parity is enabled with 8-bit data enabled, no parity will
be generated or checked (that is, no 9-bit data formats).

Automatic parity-enable appends a parity bit to the data while
parity-enable steals the most significant bit of each data byte.

1-9 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV T$SLC0

Table 8-3
Key = 3 Line Configuration Control Block (HSSMLC, bits 1-9)

HSSMLC

Halfword 0 12 3 4 5 6 7

•—Select formatter mode:
0 EBCDIC
1 ASCII

Select BCC:
1 LRC

(use with ASCII mode only)
0 CRC-16

Unused control bits

F i r s t Ed i t i on 8-10

T$SLC0 SYNC/ASYNC CONTROLLERS

Table 8-4
Key = 3 Line Configuration Control Block (5646, Bits 1-9)

5646
BISYNC

Halfword 0

HDLC

Halfword 0

— 0 EBCDIC
1 ASCII

'— 1 Enable LRC
0 CRC16

i Enable "X.25" Operation

Tx: End message on
left byte

Tx: 0 = FLAG line during
idle periods.

-1 = MARK line during
idle periods.

Enable GO-AHEADs
(loop mode)

Tx: Start on right byte
Rx: Start on right byte and

generate encoded status if
message ends with the left
byte.

HDLC enable

Enable all-parties address mode.

Enable secondary station mode.

Secondary station mode, HDLC mode, Loop mode, and all-parties address
mode are enabled on a line-pair basis only.

8 -11 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV T$SLC0

Table 8-5
Key = 3 Line Configuration Control Block (5647, Bits 1-9)

5647
BISYNC

Halfword 0 3 4 5
0 0 0

i. o EBCDIC
1 ASCII

«— 1 Enable LRC
0 CRC16

1 Enable "X.25" operation

PACKET

Halfword 0

Enable CRC24

1— Enable upper bank

F i r s t Ed i t i on 8-12

T$SLC0 SYNC/ASYNC CONTROLLERS

Table 8-6
Key = 3 Line Configuration Control Block (5650, Bits 1-9)

5650
BISYNC

H a l f w o r d 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 j 0

1 I 0 EBCDIC
! 1 A S C I I
>■-- 1 Enable LRC

0 CRC16

L. - Enable "X.25" Operation

ICL7020/UT200/1004

H a l f w o r d 0 1 2 3 4 5 6 7 8 9
! 1 0 0 0 | 0 1 1

i — - - -Enable ICL7020*

Enable 1004*

Recommended Configurations

1004 '140722
UT200 '40723 (Add '40 to enable DSS
ICL7020 '42723 i n t e r r u p t s)

* Default protocol is UT200

1-13 First Edition

SUBROUTINES, VOLUME IV T$SLC0

Table 8-7
Key = 3 Line Configuration Control Block (5651, Bits 1-9)

5651
ICL7020/UT200/1004

Halfword 0

HDLC

Halfword 0

2 3 4 5
0 0 0 0

Enable ICL7020*

Enable 1004*

Recommended Configurations

UNIVAC '100722
UT200 '723
ICL7020 '2723

(Add '40 to enable DSS interrupts)

Tx: End message on
left byte

Tx: 0 = FLAG line during
idle periods.

-1 = MARK line during
idle periods.

L— Enable GO-AHEADs
(loop mode)

l—Tx. start on right byte
Rx: Start on right byte and

generate encoded status
I i f m e s s a g e e n d s w i t h t h e
| l e f t b y t e .
i
L— HDLC enable

Enable all-parties address mode

Enable secondary station mode

Secondary Station Mode, HDLC mode, Loop mode, and all-parties address
mode are enabled on a line-pair basis only.

*Default protocol is UT200

F i r s t Ed i t i on 1-14

T$SLC0 SYNC/ASYNC CONTROLLERS

Table 8-8
Key = 3 Line Configuration Control Block (5652, Bits 1-9)

5652
ICL7020/UT200/1004

Halfword 0

PACKET

Halfword 0

Enable ICL7020

i. Enable 1004 (UT200=Default)

Recommended Configurations

1004 '100722
UT200 '723
ICL7020 '2723

(Add '40 to enable
DSS interrupts)

i - -

i-Enable CRC24

Enable upper bank

8-15 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV T$SLC0

Table 8-9
Key = 3 Line Configuration Control Block (5653, Bits 1-9)

5653
HDLC

Halfword 0 2 3 4 5 6 7 8 9
0 0 ■ ' • ' ' '

Tx: End message on
left byte.

Tx: 0 = FLAG line during
idle periods.

-1 = MARK line during
idle periods.

Enable GO-AHEADs
(loop mode).

Tx: Start on right byte
Rx: Start on right byte

and generate encoded status
if message ends with the
left byte.

i- HDLC enable.

-—Enable all-parties address mode
— Enable secondary station mode.

Secondary station mode, HDLC mode, loop mode, and all-parties
address mode are enabled on a line-pair basis only.

PACKET

Halfword 0

P.T

F i r s t Ed i t i on 8-16

T$SLCO SYNC/ASYNC CONTROLLERS

Table 8-10
Key = 3 Line Configuration Control Block (5654, Bits 1-9)

5654
BISYNC

Halfword 0

GRTS

Halfword 0

0 EBCDIC.
1 ASCII.

1 Enable LRC.
0 Enable CRC16.

*•- Enable "X.25" Operation.

0 EBCDIC.
1 ASCII.
GRTS uses ASCII

l- 1 Enable LRC
0 Enable CRC16.
GRTS uses LRC.

•-—Enable "X.25" Operation
Not used in GRTS

1-17 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV T$SLC0

Table 8-11
Key = 3 Line Configuration Control Block (Halfwords 1-4)

Halfword 1 Word configuration - Transmitter bit settings
as for Halfword 0.

Halfword 2 Special character (OTA '00 : Function '10)

Bits 7-1 00
01
10
11

Character 1
Character 2
Character 3
Character 4

Halfword 3

Halfword 4

Bits 9-16 Character

Special character bit settings as for Halfword 2

Clock selection:

0 Reset internal clock to default 9.6 Kbps
1 Switch internal clock to 62.5 Kbps.

F i r s t Ed i t i on 8-18

T$SLCO SYNC/ASYNC CONTROLLERS

Table 8-12
Key = 4 Data Set Control Bits (OTA '00:Function '00)

Bit 13 Not used
Bit 14 Speed Select
Bit 15 Request to send (RTS)
Bit 16 Data Terminal Ready (DTR)

Table 8-13
Key=5 Receive/Transmit Enable (OTA '00-.Function '15)

Halfword 0 B i t 11 Select internal as receive clock
B i t 12 Select internal as transmit clock
B i t 13--14:

00 Normal (transmit out, receive in)
01 Loop full duplex (transmit out,

receive in)
10 Echo full duplex (receive in,

transmit out)
11 Loop half duplex (pair combinations

must be: 1-2, 2-1, 3-4, 4-3)
B i t 15

1 Enable transmitter
0 Disable transmitter

B i t 16
1 Enable receiver
0 Disable receiver

Halfword 1 B i t 16
1 Enable transmitter
0 Enable receiver

Note

Transmi t te r and receiver must be enabled/disabled separately.

8-19 First Edition

SUBROUTINES, VOLUME IV

ASYNCHRONOUS CONTROLLERS

Applications that require the use of asynchronous controllers are
serviced by two subroutines: ASNLN$ for line assignment requests and
T$AMLC for raw data movement. The description of these subroutines
f o l l o w.

F i r s t E d i t i o n 8 - 2 0

SYNC/ASYNC CONTROLLERS

r A S N L N $

Purpose

ASNLN$ (Assign AMLC line) allows user programs to request the
assignment of a line directly.

Usage:

DCL ASNLN$ ENTRY(FIXED BIN(15), FIXED BIN(15), CHAR(6),
FIXED BIN(15), FIXED BIN(15), FIXED BIN(15));

CALL ASNLN$ (key, line, protocol, config, lword, code);

Parameters

key

INPUT. Indicates the desired assignment option and may be one of
the following:

0 Unassign AMLC line.

1 Assign AMLC line.

2 Unassign all AMLC lines owned by caller,

l i n e

INPUT. Indicates the desired line number to be addressed for the
keyed operation.

protocol

INPUT/OUTPUT. Indicates the desired protocol (input or output).
Blanks cause a default to TRAN (transparent), signifying both input
and output. Refer to the System Administrator's Guide for a
complete discussion of AMLC protocols.

c o n fi g

INPUT. Indicates the desired config setting. 0 indicates no
change desired.

8 - 2 1 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V A S N L N $

lword

INPUT. Indicates the desired line characteristics. The buffer
number used for the line cannot be changed by a user program using
this interface.

code

OUTPUT. Status returned to caller, either a 0 for success or one
of the error codes, as listed in Appendix A.

Descr ipt ion

This routine, a direct entrance call, performs the assignment and
unassignment of AMLC lines for a caller. A user may own more than one
assigned line. The caller may also set line characteristics, protocol,
etc. This routine will only allow a caller to assign a line that has a
corresponding LBT entry of 0, which means that the line is assignable.
The buffer used for the assigned line is dynamically chosen within
ASNLN$.

Refer to the System Administrator's Guide for protocol, config, and
lword values.

Loading and Linking Information

NPFTNLB — V-mode (unshared)
PFTNLB — V-mode

F i r s t E d i t i o n 8 - 2 2

SYNC/ASYNC CONTROLLERS

T$AMLC

Purpose

T$AMLC is a direct entrance call. It performs raw data movement,
provides status information about assigned AMLC lines, and transfers
characters between the caller's buffer and a desired assigned line's
buffer. The caller must own the desired line, that is, the line has
been assigned with the ASNLN$ routine or a Primos command.

Usage

DCL T$AMLC ENTRY(FIXED BIN(15),
FIXED BIN(15),
FIXED BIN(15))

PTR OPTIONS (SHORT), FIXED BIN(15),
2 FIXED BIN(15), FIXED BIN(15),

CALL T$AMLC (line, ADDR(buffer), ch_cnt,
key, statv, ch_pos,
errcode);

Parameters

l i n e

INPUT. Indicates the AMLC line number desired for the data
movement ope rat ion.

ADDR(buffer)

INPUT. Pointer to the address of the caller's buffer.

ch_cnt

INPUT. Indicates the desired number of characters to move. No
maximum limit is enforced, other than the limits of the fixed
bin(15) parameter: 32,767 characters.

1-23 First Edition

S U B R O U T I N E S , V O L U M E I V T $ A M L C

key

INPUT. Indicates the desired operation. Valid keys are:

1 Inpu t ch_cn t charac te rs .

2 Input ch_cnt characters or until .NL. is encountered.
statv(l) will hold the actual number of characters read.

3 Output ch_cnt characters. Maximum is ch_cnt. This key
assures the caller that ch_cnt characters will be
output. For example, an error is not returned if the
line's input or output buffer is smaller than ________.
T$AMLC will output blocks of data from the caller's
buffer into the available space in the line's output
buffer until ch_cnt is exhausted. A one-second wait is
issued between output chunks to allow time for the
line's output buffer to clear. In most cases, the
entire ch_cnt should be output at once.

4 Load statv such that _______ (1) = number of characters in
input bu f fe r. s ta tv (2) = s ta te o f car r ie r. 0 =
carrier, not 0 = no carrier.

5 Return status of output buffer such that _______ (1) = 1 if
room for ch_cnt in output buffer. statv(1) =0 if not
enough room for c___cnt. statv(2) = state of carrier.

6 Input a l l ava i lab le charac ters in the input bu f fe r.
Maximum = ch_cnt. This key will place all the available
characters from the line's input vbuffer into the
ca l le r 's buffer. s ta tv (l) = number o f characters
actually input.

7 Return additional output buffer status. (Refer to key
5.) _______(1) = amount of character space remaining in
the output buffer.

8 F l u s h i n p u t b u f f e r .

9 F l u s h o u t p u t b u f f e r.

10 Flush both output and input buffers.

11 Output characters to available space in output buffer.
This key will output as many characters as possible into
the line's output buffer. A wait will not be done to
exhaust ch_cnt.

After execution on this key, _________ (1) = ch_cnt minus the
number of characters actually output, i.e. _______(1) =
number of chars that were not successfully output. If
statv(1) = 0, then all characters were output.

F i r s t E d i t i o n 8 - 2 4

T$AMLC SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

s t a t v

OUTPUT. Indicates the two-halfword status vector, subdivided into
statv(1) and statv(2); these will output values dependent on the
key that is input.

ch_pos

INPUT. The caller may wish to indicate a starting position within
the buffer addressed by loc(buf_ad). ch_pos applies for both input
and output keys. This is an optional argument. If omitted, the
default is to start with the first character.

Note

If ch_pos is used, the first character position should be
indicated by 1. (There is no character at position 0.)
Also, ch_pos is not updated within T$AMLC.

code

OUTPUT. Optional argument to return error status. If code is
present, error messages will not be printed at the caller's
te rmina l .

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

8 - 2 5 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

AS$LST

Purpose

AS$LST retrieves asynchronous line characteristics.

Usage

DCL AS$LST ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
PTR, PTR, FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15));

CALL AS$LST (line__n umber, key, version, list_ptr, errlist_ptr,
list_length, errcount, code);

Parameters

line_number

INPUT. The asynchronous line about which you wish to retrieve
information. Specify -1 to retrieve the characteristics of your
login line.

key

INPUT. A key that indicates the source of the information that
AS$LST is to return. The valid keys are:

k e y a c t i o n

K$PLST Return the parameters specified by the parameter
list pointed to by ____________. (See below.)

K$GTAL Return all parameters. An asynchronous line has
29 retrievable characteristics. A full list of
characteristics and values is provided below.

version

INPUT. The version number of the AS$LST internal structure. For
PRIMOS Revision 22, set this parameter to 1.

l i s t _ p t r

INPUT -> OUTPUT. A pointer to an array in your program that
consists of pairs of 16 bit halfwords. In the first entry of each
pair, you can specify a line characteristic that you want AS$LST to
re turn ; AS$LST re tu rns the cor respond ing va lue o f tha t

F i r s t E d i t i o n , U p d a t e 2 8 - 2 6

AS$LST SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

characteristic to the second entry in the pair. If you want AS$LST
to return only the characteristics specified in this array, you
must set key to K$PLST. If you want AS$LST to return values for
all 2 9 asynchronous line characteristics, set key to K$GTAL; in
this case, you need not specify anything in the array.

e r r l i s t _ p t r

INPUT -> OUTPUT. A pointer to an array of 16 bit halfwords in your
program. AS$LST returns error codes for invalid characteristics to
this array if key is set to K$PLST. This array should be the same
size as the array pointed to by list_ptr. Errors are returned as
pairs of numbers, the first number in each pair being an index to
the list you specified in ___st___tr, and the second number being the
error code. For example, if you specify two characteristics in the
array pointed to by list_ptr and the second characteristic you
specified contains an error, the errlist_ptr array will contain a
pair consisting of the number 2 followed by an error code. The
error codes returned to this list are as follows:

E$DPAR Duplicate parameter. Returned each time a valid
characteristic number is duplicated in the list.

E$PNR Parameter not retrievable. Returned if you specify a
characteristic number that is invalid or a valid
characteristic number that may not be retrieved.

l i s t _ l e n g t h

INPUT -> OUTPUT. If you set key to K$PLST, you must set
list_length to the number of asynchronous line characteristics
specified in the array pointed to by list_ptr. If you set key to
K$GTAL, you must set list—length to the declared size of the array
of pairs of halfwords; AS$LST will change the list—length value to
the number of pairs that it returns. The arrays pointed to by
list—ptr and errlist—ptr should be the same size.

error_count

The number of errors returned to the error list pointed to by
errlist_ptr. Errors are returned to this list only if you set key
to K$PLST.

1 - 2 7 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O AS$LST

code

OUTPUT. Standard error code. The possible codes are:

E$OK The operation completed successfully.

E$BLEN The array was not large enough for the number of
characteristics to be returned.

E$BVER The version number is not correct.

E$BPAR A bad parameter was specified in the list pointed to by
___________. If this error is returned, there are one or
more error codes in the error list pointed to by
e r r l i s t — p t r .

D iscuss ion

AS$LST returns the characteristics of the asynchronous line that you
s p e c i f y . Yo u c a n u s e A S $ L S T t o r e t r i e v e a l l o f t h e l i n e ' s
cha rac te r i s t i c s o r any subse t o f t hem. AS$LST can re tu rn t he
charac te r i s t i cs o f l oca l asynch ronous l i nes and Ne twork Te rm ina l
Service (NTS) lines. These can be terminal lines or assignable lines.
AS$LST cannot l ist characterist ics of remote users; you must use
DUPLX$ to list characteristics of remote users.

The information returned by AS$LST consists of pairs of numbers: the
first number in each pair is the characteristic, and the second number
is the value of the characteristic. Each pair consists of two 16 bit
ha l fwo rds .

To make AS$LST return only certain characteristics, you must set key to
K$PLST; then you must specify the number of each characteristic that
you want to retrieve as the first number in one of the pairs in the
l i s t—pt r a r ray.

AS$LST can return the following asynchronous line characteristics:

Echo 0 — No echo
1 — Echo

Reverse flow control 0 — No Xon/Xoff
1 — Xon/Xoff

11 Line Speed -1 -- Other
0 -- 110 bps
1 -- 134.5 bps
2 -- 300 bps
3 -- 1200 bps
4 -- 600 bps
5 --75 bps
6 -- 150 bps

First Edition, Update 2 8-28

A S $ L S T S Y N C H R O N O U S A N D A S Y N C H R O N O U S C O N T R O L L E R S

7 — 1800 bps
8 — 200 bps
9 — 100 bps
10 - 50 bps
11 - 75/100 bps
12 - 2400 bps
13 - 4800 bps
14 - 9600 bps
15 - 19200 bps
16 - 48000 bps
17 - 56000 bps
18 - 64000 bps
30 - 3600 bps
31 - 7200 bps

0 — No Xon/Xoff
1 — Xon/Xoff

12 Flow control

13 Line feed 0 — No line feed
1 — Line feed after carriage return

21 Parity check 0 — No parity checking
3 — Parity checking and generation

50 Char length 5 — 5 bits
6 — 6 bits
7 — 7 bits
8 — 8 bits

51 Stop bits 1 — 1 stop bit
2 — 2 stop bits

52 Parity type 0 — Parity odd
1 — Parity even

53 Line protocol 0 — TTY
1 — TRAN
2 — TT8BIT
3 — TTYUPC
4 — TTY8
5 — TTYNOP
6 — TTYHS
7 TRANHS
8 — TTY8HS
9 — TTYHUP

75 Data sense enable 0 — Don't use reverse channel protocol
1 — Use reverse channel protocol

76 Data set sense 0 — If Data set sense is off(l); do XON
If Data set sense is on(0); do XOFF

1 — If Data set sense is off(l); do XOFF
If Data set sense is on(0); do XON

8 - 2 9 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I /O AS$LST

77 Input error detection 0 — Disable error detection
1 — Enable error detection

78 Data set control 0 — Off
1 — On

7 9 Loop line 0 — Do not loop
1 — Loop

80 User number Terminal line: process number associated with line
Assignable line: Owner process number of line.

81 Auto speed detect 0 — Do not enable auto speed detect
1 — Enable auto speed detect

82 Line type 0 — Terminal line
1 — Assignable line

83 Logout on disconnect 0 — Disable logout on disconnect
1 — Enable logout on disconnect

Note

Do not attempt to set characteristics numbered 84 or greater.

84 Jumper 1 speed Same possible values as characteristic 11.

85 Jumper 2 speed Same possible values as characteristic 11.

86 Jumper 3 speed Same possible values as characteristic 11.

87 Clock speed Same possible values as characteristic 11.

88 Buffer number Terminal line: Buffer number associated
with process.

Assignable line: Buffer number associated
with line.

8 9 Clock line 0 — Line is not the clock line
1 — Line is the clock line

90 Flow control type 0 — None
1 — Input buffer
2 — On controller board
3 — Both input buffer and on controller board

91 Controller type 0 — Unknown
1 — ICSl
2 ~ ICS2
3 — ICS3
4 — AMLC/DMT
5 — AMLC/DMQ

F i r s t E d i t i o n , U p d a t e 2 8 - 3 0

AS$LST SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

6 — NTS

92 AMLQ buffer Any legal buffer size.

105 Received XOFF 0 — Did not receive XOFF
1 — Received XOFF

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

1 — 3 1 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

ASSLIN

Purpose

AS$LIN returns asynchronous line number.

Usage

DCL AS$LIN ENTRY (FIXED BIN(15), FIXED BIN(15));

CALL AS$LIN (line_number, code);

Parameters

line_number

OUTPUT. The line number of your asynchronous line.

code

OUTPUT. Error status code. The possible codes are

E$OK The operation completed successfully.

E$BLIN Bad line number.

E$LNP Line not present on system.

E$RMLN Illegal operation on remote line.

Discussion

AS$LIN returns the line number of the asynchronous line attached to the
caller's terminal. This subroutine returns local line numbers; it
does not return remote line numbers. Do not use this subroutine for
remote login terminals that use a modem. This subroutine can be used
for terminals connected to the system by a direct connect modem.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

First Edition, Update 2 8-32

SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

r

AS$SET

Purpose

AS$SET sets asynchronous line characteristics.

Usage

DCL AS$SET ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
PTR, PTR, FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15));

CALL AS$SET (line_jnumber, key, version, list_ptr, errlist_ptr,
list_length, errcount, code);

Parameters

line_number

INPUT. The asynchronous line to be set. Specify -1 if you wish to
set your login stream line.

key

INPUT. A key that indicates the source of the information for
setting the line characteristics. The possible options are:

k e y a c t i o n

K$PLST Indicates that the source of the
information is the list pointed to by list_ptr.

K$SLS Indicates that the source of the information is the
system login settings defined in the System Login
Characteristics Table. This Table is described in
the System Administrator's Guide, Volume II.

version

INPUT. The version number of the AS$SET internal structure. For
PRIMOS Revision 22, set this parameter to 1.

l i s t _ p t r

INPUT. A pointer to an array of 16-bit halfwords in your program.
Use this array to specify the line characteristics and their values
that you wish to set. Specify this information as pairs of

! - 3 3 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O AS$SET

numbers, the first number in each pair being the characteristic and
the second number being the value. The numbers for characteristics
and their values are listed in the description of AS$LST. Each
pair of numbers requires two 16-bit halfwords.

e r r l i s t _ p t r

INPUT -> OUTPUT. A pointer to an array of 16 bit halfwords in your
program. AS$SET returns error codes for invalid characteristics to
this array. This array should be the same size as the array
pointed to by list—ptr. Errors are returned as pairs of numbers,
the first number in each pair being the index to the list you
specified in list_ptr and the second number being the error code.
For example, if you specify two characteristics in the array
pointed to by list_ptr and the second characteristic you specified
contained an error, the errlist_ptr array will contain a pair
consisting of the number 2 followed by an error code. The error
codes returned in this list are as follows:

E$DPAR Duplicate parameter. Returned each time a valid
characteristic number is duplicated in the list.

E$IPS Invalid parameter setting. Returned for a valid
characteristic number with an invalid value.

E$ITLB Invalid terminal line buffer. Returned if you try to set
the User Number characteristic for an assignable line.

E$PNS Parameter not settable. Returned if you specify a
characteristic number that is invalid or a valid
characteristic number that may not be set.

l i s t _ l e n g t h

INPUT. The number of characteristics specified in the array
pointed to by list—ptr. The arrays pointed to by list_ptr and
errlist_ptr should be the same size. If you specify K$SLS for the
key parameter, you must set the list_length to zero.

errcount

OUTPUT. The number of errors returned to the array pointed to by
e r r l i s t _ p t r .

code

OUTPUT. Standard error code. The possible codes are:

E$OK The operation completed successfully.

E$BLEN The error list is not large enough for the number of
errors to be returned. No characteristics have been set.

First Edition, Update 2 8-34

AS$SET SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

E$BPAR One or more errors were returned to the array pointed to
by errlist_ptr. No characteristics have been set.

E$BVER Incorrect version number. No characteristics have been
se t .

Discussion

AS$SET sets characteristics of asynchronous lines. It can set the
characteristics of local asynchronous lines and Network Terminal
Service (NTS) lines. These can be terminal lines or assignable lines.
Characteristics set using AS$SET remain set for the duration of the
current session. AS$SET cannot set characteristics of remote users;
you must use DUPLX$ to set characteristics of remote users.

AS$SET sets characteristics based on the key parameter. If key is
K$PLST, AS$SET uses the information you supply in the area pointed to
by list_ptr to set characteristics. If key is KSLS, ASSET resets all
characteristics to system defaults.

You use AS$SET to change the va lues o f cha rac te r i s t i cs ;
characteristics not specified in AS$SET remain set to their existing
values. You specify values for characteristics as pairs of code
numbers, the first number in each pair specifying the characteristic,
and the second number specifying the value for that characteristic.
You can specify these pairs in any sequence.

The names and valid values for characteristics are shown in the
discussion of AS$LST. Do not attempt to set characteristics numbered
84 or greater. Do not attempt to set a value for User Number for an
assignable line or a value for Buffer Number for a terminal line.

Before setting any characteristics, AS$SET validates all of the listed
pairs. If it detects invalid values or duplicate entries, it does not
set any line characteristics, but instead writes a paired entry
(characteristic and error code) for each error into the area pointed to
by errlist—ptr and sets code to E$BPAR.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

8 - 3 5 F i r s t E d i t i o n , U p d a t e 2

S U B R O U T I N E S R E F E R E N C E I V : L I B R A R I E S A N D I O - ^

N T $ L T S - >

Purpose

NT$LTS returns information about a PRIMOS line used for LAN terminal
service (LTS) .

Usage

DCL NT$LTS ENTRY (FIXED BIN(15), FIXED BIN(15), CHAR(16) VAR,
FIXED BIN(15), CHAR(6), FIXED BIN(15));

CALL NT$LTS (primos_line_number, media_type, LTS_name,
LTS_line, MAC_address, code);

Parameters

primos_line_number

INPUT. A PRIMOS line number. The line number can range from 1024
to 1535. The line can be either a login or an assignable line
across network terminal service.

media_type

OUTPUT. The media type. Possible values are:

0 IEEE 802.3 Ethernet

LTS_name

OUTPUT. The LTS name corresponding to the media type and Media
Access Control (MAC) address for the LTS. This field is blank and
NT$LTS returns a zero return code if the unconfigured LTS option is
utilized and this is not a configured LTS.

LTS_line

OUTPUT. Physical line number on LTS for connected line. Must
range from 0 to 7.

MAC—address

OUTPUT. The Media Access Control (MAC) address for the connection
corresponding to the PRIMOS line number requested.

F i r s t E d i t i o n , U p d a t e 2 8 - 3 6

N T $ LT S S Y N C H R O N O U S A N D A S Y N C H R O N O U S C O N T R O L L E R S

code

OUTPUT. The status code. Possible values are:

E$OK The call to NT$LTS was completed without error.

E$NTNS NTS is not currently started.

E$BDEV Specified line is not a valid network terminal
se rv i ce l i ne .

E$LNOC The PRIMOS line is not currently connected.

D iscuss ion

NT$LTS is a direct-entrance call that returns the media type, LAN
Terminal Service (LTS) logical name, LTS line number, and Media Access
Control (MAC) address for network terminal service lines in PRIMOS.

I f the LTS log ica l name is no t configured , as in the case o f
unconfigured LAN Terminal Services allowed on the Local Area Network
(LAN), the LTS logical name returned is null. NT$LTS returns valid
information only if the NTS line is connected.

Effective for PRIMOS Rev. 22.0 and subsequent revisions.

Example

The following code from an external logout program receives an LTS_name
from NT$LTS, determines whether it is the name of a configured LTS, and
if it is, calculates the proper surcharge for the amount of time used.

DCL chargeable_l ts__names (3) char(16) var in i t (' l ts l ' , ' l ts2 ' , '
l a b - c o n n e c t ') ;

DCL LTS_rates(0:3) fixed bin(15) init(0,1,3,2); /* In cents/min. */

CALL NT$LTS(my_line, media_type, LTS_name, LTS_line, MAC_address,code);
If code = 0 then

If LTS_name A= '' then do ; /* Configured LTS - see if we should
apply surcharge for use */

charge_index = Index (chargable_lts_names,' ' I ILTS_nameI I' ');
charge_index = 0;
Do i = 1 to 3 while (charge_index = 0) ;

If LTS_name = chargable_lts_names(i) then
charge_index = i;

end;
LTS_charge = LTS_rates(charge_index) * connect_time;

1 - 3 7 F i r s t E d i t i o n , U p d a t e 2

PART IV

APPLICATION LIBRARY

Introduction to
Application Library

GENERAL DESCRIPTION

Part IV of this Volume contains descriptions of the Application
Library, called APPLIB for its subroutines written in R-Mode and VAPPLB
for those in V-Mode. The Application Library is a user-oriented
library that provides a set of service routines, designed for ease of
use. In many cases, the APPLIB or VAPPLB routines call a lower-level
routine, filling in arguments that the caller isn't concerned about.
The routines may also reformat the data that the lower-level routine
returns. The use of APPLIB or VAPPLB routines avoids a duplication of
effort and provides a consistent interface for the terminal user.

All of these routines are written as FORTRAN functions. When used as
such, they return one — and only one — of the following:

• A status indication (a FORTRAN logical .TRUE, or .FALSE.)

• An appropriate value

• An alternate value or format of a returned argument

• A code that must be decoded

9 - 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

Al l error detect ion, report ing, and, i f possible, recovery are
performed by the routine, which returns only an indication of success
or failure. This simplified error-reporting scheme assures the user
that the error is reported and all possible recovery procedures have
been tried.

These routines may be used either as subroutines or as functions that
return a value. If you use them as functions, be aware that the
logical value returned is a .TRUE. or .FALSE. according to FORTRAN
conventions. If you use them as subroutines, be aware that there is no
code parameter provided for error detection. You are therefore urged
to use the function form.

Since FORTRAN logical values are returned by these functions (as
opposed to PL/I logical values, for example, returning a single bit),
the Usage descriptions are given in FTN. Programmers in other
languages should consult the chapter treating that language in Volume I
to see how to handle these values.

HOW TO USE PART IV

Refer to the following chapters for descriptions of the indicated
categories of functions provided by the Applications library:

Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16

String Manipulation Routines
User Query Routines
System Information Routines
Randomizing Routines
Conversion Routines
File System Routines
Parsing Routine

FORMAT SUMMARY

Below is a brief summary of the calling sequences for all the
VAPPLB and APPLIB routines. The type codes are defined as:

T y p e C o d e D e s c r i p t i o n

L L O G I C A L

I I N T E G E R * 2 o r I N T E G E R * 4

1 * 2 I N T E G E R * 2

R R E A L

D P D O U B L E P R E C I S I O N o r R E A L * 8

F i r s t E d i t i o n 9 - 2

INTRODUCTION TO APPLICATION LIBRARY

Group

Str ing

Name

CSTR$A
CSUB$A
FILL$A
FSUB$A
GCHR$A
JSTR$A
LSTR$A
LSUB$A
MCHR$A
MSTR$A
MSUB$A
NLEN$A
RSTR$A
RSUB$A
SSTR$A
SSUB$A
TREE$A
TYPE$A

RNAM$A
RNUM$A
RNAM$A
RNUM$A
YSNO$A

Information CTIM$A
DATE$A
DOFY$A
DTIM$A
EDAT$A
TIME$A

Randomizing RAND$A
RNDI$A

User Query

Conversion CASE$A
CNVA$A
CNVB$A
ENCD$A
FDAT$A
FEDT$A
FTIM$A

T y p e A r g u m e n t s

L (A,ALEN,B,BLEN)
L (A,ALEN,AFC,ALC,B,BLEN,BFC,BLC)
I (NAME,NAMLEN,CHAR)
L (STRING,LENGTH,FCHAR,LCHAR,FILCHAR)
I (FARRAY,FCHAR)
L (KEY,STRING,LENGTH)
L (A,ALEN,B,BLEN,FCP,LCP)
L (A,ALEN,AFC,ALC,B,BLEN,BFC,BLC,FCP,LCP)
I (TARRAY,TCHAR,FARRAY,FCHAR)
1*2 (A,ALEN,B,BLEN)
1*2 (A,ALEN,AFC,ALC,B,BLEN,BFC,BLC)
1*2 (NAME,NAMLEN)
L (STRING,LENGTH,COUNT)
L (STRING,LENGTH,FCHAR,LCHAR,COUNT)
L (STRING,LENGTH,COUNT,FILCHAR)
L (STRING,LENGTH,FCHAR,LCHAR,COUNT,FILCHAR)
I (NAME,NAMLEN,FSTART,FLEN)
L (KEY,STRING,LENGTH)

L" (MSG,MSGLEN,NAMKEY,NAME,NAMLEN)
L" (MSG,MSGLEN,NUMKEY,VALUE)
L (MSG,MSGLEN,NAMKEY,NAME,NAMLEN)
L (MSG,MSGLEN,NUMKEY,VALUE)
L (MSG,MSGLEN,DEFKEY)

DP (CPUTIM)
DP (DATE)
DP (DOFY)
DP (DSKTIM)
DP (EDATE)
DP (TIME)

DP (SEED)
DP (SEED)

L (KEY,STRING,LENGTH)
L (NUMKEY,NAME,NAMLEN,VALUE)
I (NUMKEY,VALUE,NAME,NAMLEN)
L (ARRAY,WIDTH,DEC,VALUE)
DP (DATMOD,DATE)
DP (DATMOD,DATE)
DP (TIMMOD,TIME)

9-3 First Edition

SUBROUTINES, VOLUME IV

Group

File System CLOS$A
DELE$A
EXST$A
GEND$A
OPEN$A
OPNP$A

OPNV$A

OPVP$A

POSN$A
RPOS$A
RWND$A
TEMP$A
TRNC$A
TSCN$A

Parsing

N a m e T y p e A r g u m e n t s

L (F U N I T)
L (NAME,NAMLEN)
L (NAME,NAMLEN)
L (F U N I T)
L (OPNKEY+TYPKEY+UNTKEY,NAME,NAMLEN,FUNIT)
L (MSG,MSGLEN,OPNKEY+TYPKEY+UNTKEY,NAME,

NAMLEN,FUNIT)
L (OPNKEY+TYPKEY+UNTKEY,NAME,NAMLEN,FUNIT,

VERKEY,WTIME,RETRY)
L (MSG,MSGLEN,OPNKEY+TYPKEY+UNTKEY,NAME,

NAMLEN,FUNIT,VERKEY,WTIME,RETRY)
L (POSKEY,FUNIT, POS)
L (FUNIT,POS)
L (F U N I T)
L (TYPKEY,NAME,NAMLEN,FUNIT)
L (F U N I T)
L (KEY,FUNITS,ENTRY,MAXSIZ,

ENTSIZ,MAXLEV,LEV,CODE)
U N I T $ A L (F U N I T)

CMDL$A L (KEY,KWLIST,KWINDX,OPTBUF,BUFLEN
OPTION,VALUE,KWINFO)

NAMING CONVENTIONS

All APPLIB and VAPPLB routines follow a consistent naming convention
designed to avoid the possibility of a conflict with user-written
routines and system routines. They all have a four-letter mnemonic
name and the suffix $A. For example, the routine to open a temporary
file is named TEMP$A.

Note

While all subroutines in APPLIB/VAPPLB use a $A suffix,
every subroutine with this suffix belongs to this library.

not

Subroutines used internally by APPLIB routines have a suffix of $$__.
Do not use these subroutines under ordinary circumstances.

Keys

Many routines have options which are specified by named parameter keys
which all begin with the prefix A$. All parameter keys are defined in
a $INSERT file named SYSCOM>A$KEYS.INS.language. The key names
following the A$ prefix are three- or four-letter mnemonics specifying
the allowable options for the various routines. They are INTEGER*2
data types. In addition, the FORTRAN version of this file supplies all
the appropriate FUNCTION type declarations for the application
routines. Volume I provides a listing of SYSCOM>A$KEYS with the

First Edition 9-4

INTRODUCTION TO APPLICATION LIBRARY

decimal value for each key. Please read the chapter on your language
interface to see how to use this file.

LIBRARY IMPLEMENTATION POLICIES

VAPPLB and its R-mode version, APPLIB, exist as independent libraries
in the UFD LIB.

Cau t ion

R-mode subroutines can be called from FTN and PMA in R-mode
only. If you call an R-mode routine from a program in a
di fferent mode, the resul ts are unpredictable. Refer to the
FORTRAN and PMA chapters in Volume I for information on
declaring parameters in FTN and PMA, respectively.

The routines have been coded to make them easily callable from most
other languages, including PL/I and 1977 ANSI FORTRAN, both of which
can automat ica l ly generate s t r ing length arguments fo l lowing s t r ing
arguments. As a result, in the argument pair name, namlen, the name is
often updated by an application routine, but the namlen argument is
never modified. If the namlen argument is not 0 or positive, an error
message is displayed on the user terminal . Where appl icable, the
function value returned is .FALSE.. The function NLEN$A can be used to
determine the operational length of a returned name.

All application routines that either accept keys as arguments, or call
other routines which do, use the SYSCOM>A$KEYS file to define those
keys. Also, these routines do not take advantage of any particular
numerical values these keys may have, in case it should become
necessary either to change these values or to add new keys with
numerical values which do not fit the previous pattern. For example,
there are no computed GOTOs on keys and no range checks for validity of
a key. In this way, if a new SYSCOM>A$KEYS file is created, both the
user programs and the routines they call will always agree on the
meaning of a given key. The same is true of the declared types of the
a p p l i c a t i o n f u n c t i o n s .

L ib ra ry Bu i l d ing

Al l rout ines are compi led into a single binary fi le which is then
converted into the appropriate l ibrary file with the EDB ut i l i ty. At
present, the only difference between the R-mode and V-mode build
procedures is the FTN compile option used. For APPLIB, all routines
are compiled for 64R-mode loading (LOAD). For VAPPLB, all routines are
compiled for 64V-mode loading (SEG and BIND). An unshared version of
VAPPLB exists in NVAPPLB. In addition, all routines included in VAPPLB

9 - 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

are pure procedure and may be loaded into the shared portion of a
shared procedure. When you use BIND and then specify VAPPLB, the
system selects APPLICATION-LIBRARY.RUN, another version of the shared
routines used for the EPF environment.

STRING MANIPULATION ROUTINES

The string manipulation routines operate on packed strings, unless
stated otherwise. Most of the routines in this section require that
the maximum length of a string (in characters) be passed as an
argument. The maximum length is the actual storage allocated for that
string in bytes or characters (including any trailing blanks). The
operational length of a string does not include trailing blanks, so it
may be shorter than the maximum length. (See Figure 9-1.) Since the
length of a string is specified as an INTEGER*2 variable, the maximum
possible length is 327 67 characters.

M Y N A M

h— Operational Length —▶

h M a x i m u m L e n g t h

Maximum Length and Operational Length
Figure 9-1

The majority of routines that operate on entire strings first truncate
them to their operational length. The routines that operate on
substrings treat any trailing blanks as part of the substring.

Al l str ing- length specificat ions and substr ing-del imit ing character
positions are checked for validity and must conform to the following
ru les :

• Maximum string-length specifications must be greater than or
equal to 0. A value of 0 indicates a null or empty string.

• Substring-delimiting character positions must be greater than or
equal to 0. The length of the substring must be less than or
equal to the physical string length. The beginning character
position must be less than or equal to the ending character
position. A value of 0 for either the starting or ending
character position indicates a null substring.

If these rules are violated, an error message will be displayed and the
logical functions will be .FALSE..

First Edition 9-6

INTRODUCTION TO APPLICATION LIBRARY

USER QUERY ROUTINES

These routines provide a convenient means to input data from the user's
terminal. Each routine can prompt the terminal user with a customized
message, and then process the user's response.

FILE SYSTEM ROUTINES

The file system routines in the Applications library give the user a
simple and consistent way to specify the most common file system
operations. Accordingly, the Applications library does not provide the
user with the full capabilities of the file system routines since for
detailed operations it is best to use the file system routines
themselves (Volume II). This library supports both Sequential Access
Method (SAM) and Direct Access Method (DAM) files. There is no support
for segment directory files, as the MIDAS subsystem provides the higher
level functions with these files.

All routines except Open, Delete, and Check for File Existence use only
the file unit and not the filename. File units are explained in Volume
II. Also, each routine carries the name of its function, as above,
with arguments consisting of only the relevant information, usually
only the file unit number. Note that all filenames, except scratch
files, may be pathnames.

The only complicated routines are the five OPEN routines, because of
the many ways programs can obtain the name of the file they wish to
open and the various options for verification or error recovery. Five
different routines exist to perform the varying levels of complexity.
In this way, the simple operations are represented by simple calling
sequences. Only complex operations need complex argument lists.

All OPEN routines allow selection of the file type (SAM or DAM) and all
but TEMP$A allow specification of the open mode (READ, WRITE, or
READ/WRITE). TEMP$A (scratch) files are always opened for READ/WRITE.
Table 9-1 shows the routines available for opening.

9 - 7 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

Table 9-1
Ways to Open a File

Open name. OPEN$A

Open funit. OPNP$A

Open name, verify, and delay. OPNV$A

Open funit, verify, and delay. OPVP$A

Open scratch file. TEMP$A

All OPEN routines can choose the file unit number upon which a file
will be opened. The A$GETU key is used for this purpose and the PRIMOS
file unit selected by the routine will be returned to the user (in the
argument funit). If A$GETU is not used, the user must provide the
routine with a usable file unit number.

Several of these subroutines have arguments called verkey, which allows
ver i fica t ion o f the va l id i t y o f the fi le opera t ion reques ted .
Verification provides the following options:

1. Verify that the file is new; otherwise, verify that it is all
right to modify a file which already exists.

2. Verify that the file may be modified and determine whether an
existing file is to be overwritten or appended.

3. Verify that the file exists; that is, do not allow creation of
a new file. Note that if the open mode is READ, this is the
only possible verification option.

In case of failure of an operation, the argument wtime allows the
subroutine to delay the time specified, then try again the number of
times allowed by retry, wtime provides the following options:

1. If, and only if, the file is "IN USE", wait a supplied number
of seconds (elapsed time) and try again.

2. Repeat step 1 a specified number of times.

First Edition 9-8

INTRODUCTION TO APPLICATION LIBRARY

SYSCOM>A$KEYS

The keys needed for FORTRAN programs are given in:

SYSCOM>A$KEYS>A$KEYS.INS.FTN

The Pascal and PL/I programmers should use the A$KEYS.INS.file in
SYSCOM>A$KEYS that is applicable to their language.

The listings from the SYSCOM UFD use octal values. Refer to the
Appendix section of Volume I for a listing of keys with decimal values.

9 - 9 F i r s t E d i t i o n

10
String Routines

SUMMARY OF STRING MANIPULATION ROUTINES

This chapter contains descriptions of the following string manipulation
routines from the APPLIB/VAPPLB subroutines library.

CSTR$A
CSUB$A
FILL$A
FSUB$A
GCHR$A
JSTR$A

LSTR$A
LSUB$A
MCHR$A
MSTR$A
MSUB$A
NLEN$A
RSTR$A
RSUB$A
SSTR$A
SSUB$A
TREE$A
TYPE$A

Compare two strings for equality.
Compare two substrings for equality.
Fill a string with a character.
Fill a substring with a given character.
Get a character from a packed string.
L e f t - j u s t i f y, r i g h t - j u s t i f y, o r c e n t e r a

str ing within a field.
Locate one string within another.
Locate one substring within another.
Move a character between packed strings.
Move one string to another.
Move one substring to another.
Determine the operational length of a string,
Rotate string left or right.
Rotate substring left or right.
Shif t str ing lef t or r ight.
Shif t substr ing left or r ight.
Test for pathname.
Determine string type.

10-1 F i r s t Ed i t i on

SUBROUTINES, VOLUME IV

CSTR$A

Purpose

CSTR$A is a logical function used to compare two strings for equality.
The function returns a logical value of .TRUE. if each character in
string a matches the corresponding character in string b, or if both
strings are null (length equal to 0). Otherwise, the function returns
.FALSE.. Only the operational lengths are used in the comparison.
(Trailing blanks are ignored.) If the two strings are not of equal
length, the result is .FALSE..

Usage

INTEGER*2 a(l), alen, b(l), blen
LOGICAL log

log = CSTR$A(a, alen, b, blen)

Parameters

a

INPUT. String to be compared, packed two characters per halfword.
Internal data type of the array does not matter.

alen

INPUT. Length of a, in characters. Length must be 0 or greater.

b

INPUT. String to be compared against, packed two characters per
halfword. Internal data type of the array does not matter.

blen

INPUT. Length of b in characters. Length must be 0 or greater.

F i r s t E d i t i o n 1 0 - 2

C S T R $ A S T R I N G R O U T I N E S

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB ~ V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by CSTR$A

CSUB$A and NLEN$A

1 0 _ 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

CSUB$A

Purpose

CSUB$A is a logical function used to compare substrings for equality.

Usage

INTEGER*2 a(l), alen, afc, ale
INTEGER*2 b(l), blen, bfc, blc
LOGICAL log

log = CSUB$A(a, alen, afc, ale,
x b , b l e n , b f c , b l c)

Parameters

a

INPUT. Array containing substring to be compared, packed two
characters per halfword. Internal data type of the array does not
mat ter.

alen

INPUT. Length of a, in characters. Length must be 0 or greater,

afc

INPUT. First character position of substring in a

ale

INPUT. Last character position of substring in a.

b

INPUT. Array containing substring to be compared against, packed
two characters per halfword. Internal data type of the array does
not matter.

blen

INPUT. Length of b in characters. Length must be 0 or greater.

F i r s t E d i t i o n 1 0 - 4

CSUB$A STRING ROUTINES

b f c

b l c

INPUT. First character position of substring in b.

INPUT. Last character position of substring in b.

D i s c u s s i o n

I f each charac te r in the a subs t r ing matches the co r respond ing
character in the b substring, or both substrings are null (length equal
to 0), the function will be .TRUE.. If two corresponding characters do
not match, or if the lengths of the substrings are not equal, the
function will be .FALSE..

Figure 10-1 is a representation of the arguments to CSUB$A.

afc ale

R 0 M A

alen

bfc blc

A R 0 M A

blen

Arguments to CSUB$A
Figure 10-1

Loading and Linking Information

APPLIB
NVAPPLB —
VAPPLB

R-Mode
V-Mode (unshared)
V-Mode

10-5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

FILL$A

Purpose

FILL$A is an INTEGER function that fills the name buffer with the fill
character char supplied. The function is INTEGER*2 or INTEGER*4, but
its value is always 0.

Usage

INTEGER*2 name(l), namlen, char(l)
INTEGER*2 rt_val

rt_val may also be declared INTEGER*4

rt_val = FILL$A(name, namlen, char)
(or)

CALL FILL$A(name, namlen, char)

Parameters

name

INPUT. Name of buffer to fill, packed two characters per halfword.
Data type does not matter.

namlen

INPUT. Length of name in characters (INTEGER*2).

c h a r

INPUT. Fi l l character, in FORTRAN Al format, used to fi l l the
buffer. The single char is loaded into the left byte of char; its
data type does not matter.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by FILL$A

CSUB$A and NLEN$A

F i r s t E d i t i o n 1 0 - 6

STRING ROUTINES

FSUB$A

Purpose

FSUB$A is a logical function used to fill a character substring with a
specified character. The substring delimited by fchar and lchar is
filled with the character specified in filchar. The string parameters
are checked for validity. If an error is found, the function is
.FALSE. and a message is printed. If all parameters are valid, the
function will be .TRUE..

Usage

INTEGER*2 string(l), length, fchar, lchar, filchar
LOGICAL log

LOG = FSUB$A(string, length, fchar, lchar, filchar)
(or)

CALL FSUB$A(string, length, fchar, lchar, filchar)

Parameters

s t r i n g

INPUT/OUTPUT. String containing substring to be filled, packed two
characters per halfword. Data type does not matter.

length

INPUT. Length of string in characters,

f char

INPUT. First character position of substring,

lchar

INPUT. Last character position of substring,

fi l c h a r

INPUT. Fill character in FORTRAN Al format. Left byte of filchar
holds the character; its data type does not matter.

1 0 - 7 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V F S U B $ A

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

F i r s t E d i t i o n 1 0 ~ 8

STRING ROUTINES

GCHR$A

Purpose

GCHR$A is an INTEGER*2 or INTEGER*4 function which extracts a single
character from a packed string. It is intended for use only by FORTRAN
programmers. The function value will be the accessed character in
FORTRAN Al format (with blank padding on the right). The character
returned will be left-justified and padded with blanks.

Usage

INTEGER*2 farray(1), fchar
INTEGER*2 rt_val

C rt_val may be declared INTEGER*4

rt_val = GCHR$A(farray, fchar)
(or)

CALL GCHR$A(farray, fchar)

Parameters

f a r r a y

INPUT. Source that is the packed array. Its internal data type
does not matter.

fchar

INPUT. Character position in farray to be returned.

Discussion

This routine replaces the FORTRAN statement:

CHAR = FARRAY(FCHAR)

where FARRAY is declared LOGICAL*1 (IBM FORTRAN) or of a one-character
data type.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

1 0 - 9 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

JSTR$A

Purpose

This logical function is used to left-justify, right-justify, or center
a string within itself. The function is .TRUE. if justification is
successful; it is .FALSE. if the length is less than 0 or if a bad
key is used.

Usage

INTEGER*2 key string(length), length
LOGICAL log

LOG = JSTR$A(key, string, length)
(or)

CALL JSTR$A(key, string, length)

Parameters

key

INPUT. Determines direction of justification. Possible values
are:

A$RGHT Right-justi fy

A$LEFT Le f t - jus t i f y

A$CNTR Center

s t r i n g

INPUT/OUTPUT. String to be justified, packed two characters per
halfword. Data type does not matter.

length

INPUT. Length of string in characters. It must be greater than 0.

F i r s t E d i t i o n 1 0 - 1 0

J S T R $ A S T R I N G R O U T I N E S

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by JSTR$A

NLEN$A, FILL$A, MSUB$A, GCHR$A.

1 0 - 1 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

LSTR$A

Purpose

LSTR$A is a logical function used to locate one string within another.

Usage

INTEGER*2 a(l), alen, b(l), blen
INTEGER*2 fcp, lcp
L O G I C A L l o g

log = LSTR$A(a, alen, b, blen, fcp, lcp)
(or)

CALL LSTR$A(a, alen, b, blen, fcp, lcp)

Parameters

INPUT. String to be located, packed two characters per halfword.
Internal data type of the array does not matter.

a l en

INPUT. Number of characters in a.

b

INPUT. String to be searched, packed two characters per halfword.
Data type does not matter.

b l e n

INPUT. Length of b, in characters.

f c p

OUTPUT. First character position in b of substring that matches
str ing a.

l c p

OUTPUT. Last character position in b of substring that matches
string a_.

F i r s t E d i t i o n 1 0 - 1 2

L S T R $ A S T R I N G R O U T I N E S

Discussion

LSTR$A searches string b for the first occurrence of string a. If
string a is found, the function returns .TRUE., and fcp and lcp will be
equal to the character positions of the substring in b that matches
string a. If string a is not found, or if either string is null
(length equal to 0), the function returns .FALSE., and fcp and lcp will
be equal to 0. Each string is logically truncated to its operational
length before the search is performed (trailing blanks are ignored).

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by LSTR$A

LSUB$A and NLEN$A

1 0 - 1 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

LSUB$A

Purpose

This logical function is used to locate one substring within another.

Usage

INTEGER*2 a(l), alen, afc, ale
INTEGER*2 b(l), blen, bfc, blc
INTEGER*2 fcp, lcp
LOGICAL log

log = LSUB$A(a, alen, afc, ale, b, blen, bfc, blc, fcp, lcp)
(or)

CALL LSUB$A(a, alen, afc, ale, b, blen, bfc, blc, fcp, lcp)

Parameters

a

INPUT. Array containing substring to be located, packed two
characters per halfword. Data type does not matter.

alen

INPUT. Length of a, in characters (INTEGER*2).

afc

INPUT. First character position of substring in a.

a le

INPUT. Last character position of substring in a (INTEGER*2).

b

INPUT. Array containing substring to be searched, packed two
characters per halfword. Data type does not matter.

blen

INPUT. Length of b, in characters (INTEGER*2).

F i r s t E d i t i o n 1 0 - 1 4

LSUB$A STRING ROUTINES

b f c

b l c

fcp

l cp

INPUT. First character position of substring in b.

INPUT. Last character position of substring in b.

OUTPUT. First character position in b of substring that matches
substring in a.

OUTPUT. Last character position in b of substring that matches
substring in a.

Discussion

LSUB$A searches the substring contained in b for the first occurrence
of the substring contained in a. If a match is found, fcp and lcp will
be equal to the character positions in b of the matching substring and
the function is .TRUE..

If a matching substring cannot be found or if either substring is null
(length equal to 0), the function will be .FALSE. and fcp and lcp will
be equal to 0. (.TRUE. and .FALSE. are the FORTRAN logical values.)

Figure 10-1, included in the description of CSUB$A, illustrates the
passage of arguments to both LSUB$A and CSUB$A.

Loading and Linking Information

APPLIB
NVAPPLB —
VAPPLB

R-Mode
V-Mode (unshared)
V-Mode

10-15 First Edition

SUBROUTINES, VOLUME IV

MCHR$A

Purpose

MCHR$A is an INTEGER function that moves a character from one packed
string to another.

Usage

INTEGER*2 tarray(l), tchar, farray(l), fchar
INTEGER*2 rt_val
rt_val may be declared INTEGER*4

rt_val = MCHR$A(tarray, tchar, farray, fchar)
(or)

CALL MCHR$A(tarray, tchar, farray, fchar)

Parameters

t a r r a y

INPUT. Returned array of characters, packed two per halfword, firs
t
character on the left.

t char

INPUT. Position in tarray of the character to be received,

f a r r a y

INPUT. Source string. Data type does not matter,

fchar

INPUT. Character position in farray of character to be moved.

F i r s t E d i t i o n 1 0 - 1 6

M C H R $ A S T R I N G R O U T I N E S

Discussion

This routine replaces the FORTRAN statement:

TARRAY(TCHAR) = FARRAY(FCHAR)

when TARRAY and FARRAY are declared LOGICAL*1 (IBM FORTRAN) or of a
one-character data type. Only one character in TARRAY is replaced.

The function value will be the character that was moved in FORTRAN Al
format, that is, the character in the left-most byte, right padded with
blanks.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

1 0 - 1 7 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

MSTR$A

Purpose

MSTR$A is an INTEGER*2 or INTEGER*4 function used to move the source
string to the destination string.

Usage

INTEGER*2 a(l), alen, b(l), blen
INTEGER*2 rt_val

rt_val may be declared INTEGER*4

rt_val = MSTR$A(a, alen, b, blen)
(or)

CALL MSTR$A(a, alen, b, blen)

Parameters

INPUT. Source string, packed two characters per halfword. Data
type does not matter.

alen

INPUT. Length of a, in characters.

b

OUTPUT. Destination string, packed two characters per halfword.
Data type does not matter.

blen

INPUT. Length of b, in characters.

Discussion

If the source string is longer than the destination string, it will be
truncated. If it is shorter, it will be padded with blanks. The
source and destination strings may overlap. The function value will be
equal to the number of characters moved (excluding blank padding). If
either string is null (length equal to 0) , no characters are moved and
the function value will be equal to 0.

F i r s t E d i t i o n 1 0 - 1 8

M S T R $ A S T R I N G R O U T I N E S

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by MSTR$A

MSUB$A

1 0 - 1 9 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

MSUB$A

Purpose

MSUB$A is an integer function used to move the source substring
contained in a to the destination substring contained in b.

Usage

INTEGER*2 a(l), alen, afc, ale
INTEGER*2 b(l), blen, bfc, blc
INTEGER*2 rt_val

rt_val = MSUB$A(a, alen, afc, ale, b, blen, bfc, blc)
(or)

CALL MSUB$A(a, alen, afc, ale, b, blen, bfc, blc)

Parameters

a

INPUT. Array containing source substring, packed two characters
per halfword. Data type does not matter.

a l en

INPUT. Length of a, in characters.

a f c

INPUT. First character posi t ion of substr ing in a, packed two
characters per halfword. Data type does not matter.

a l e

INPUT. Last character position of substring in a.

b

INPUT/OUTPUT. Array containing destination substring, packed two
characters per halfword. Data type does not matter.

b l en

INPUT. Length of b, in characters (INTEGER*2).

F i r s t E d i t i o n 1 0 - 2 0

M S U B $ A S T R I N G R O U T I N E S

bfc

INPUT. First character position of substring in b.

b l c

INPUT. Last character position of substring in b.

Discussion

If the source substring is longer than the destination substring, it
will be truncated. If it is shorter, it will be padded with blanks.
The source and destination substrings may overlap.

If either substring is null (length equal to 0), no characters are
moved and the function will be equal to 0. Otherwise it is equal to
the number of characters moved (excluding blanks used for padding).

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by MSUB$A

MCHR$A

1 0 - 2 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

NLEN$A

Purpose

NLEN$A is an INTEGER*2 function that returns, as its function value,
the actual length (not including trailing blanks) of the ASCII string
in name.

Usage

INTEGER*2 name(l), namlen
INTEGER*2 rt_val

rt_val = NLEN$A(name, namlen)
(or)

CALL NLEN$A(name, namlen)

Parameters

name

INPUT. Name buffer to be tested, packed two characters per
halfword. Data type does not matter.

namlen

INPUT. Length of the variable name, possibly containing blanks.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

F i r s t E d i t i o n 1 0 - 2 2

STRING ROUTINES

RSTR$A

Purpose

RSTR$A is a logical function used to rotate a character string left or
right. The string is truncated to its operational length before the
rotate is performed; therefore, trailing blanks are not included in
count. If length is less than 0, the function returns .FALSE.,
otherwise the function returns .TRUE..

Usage

INTEGER*2 string(l), length, count
LOGICAL log

log = RSTR$A(string, length, count)
(or)

CALL RSTR$A(string, length, count)

Parameters

s t r i n g

INPUT/OUTPUT. String to be rotated, packed two characters per
halfword. Data type does not matter.

length

INPUT. Length of string in characters.

count

INPUT. Number of positions to rotate string. Negative count
causes left rotate, positive count right rotate.

Discussion

This routine uses an algorithm that minimizes temporary storage and
execution time. One word of temporary storage is used and the number
of iterations necessary to rotate a string is equal to the length in
characters of the string. A character is moved directly from its
original position to its final destination position. Figure 10-2 shows
the results of two calls to RSTR$A.

1 0 - 2 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV RSTR$A

1 2 4 5 6

4 5 6 1 2

After RSTR$A (string, 6, - 3)

1 2 4 5 6

After RSTR$A (string, 6, 2)

Use of RSTR$A
Figure 10-2

Example

Perhaps you have COBOL programs that are to be converted to CBL
programs. During conversion CBL often automatically corrects some of
the incompatibilities from your old COBOL programs. Refer to the COBOL
to CBL Conversion Guide (MAN10002-1LA) to handle the more unusual
conversion situations.

Furthermore, perhaps your COBOL programs previously had been submitted
to the SEG link/loader. After you update these programs to CBL, you
will also want to BIND them. Thereafter the system will dynamically
load your programs. You no longer risk overwriting one executable
runfile with another.

The following example of a program performing the character rotations
above also shows what happens to ROTATE.COBOL when it is renamed and
then recompiled as ROTATE.CBL. As indicated, you can BIND and RESUME
the program as is. (Nevertheless, it would be prudent to first make
the recommended changes.)

First Edition 10-24

R S T R $ A S T R I N G R O U T I N E S

OK SLIST ROTATE.COBOL
IDENTIFICATION DIVISION.
PROGRAM-ID. ROTATE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 STRING1 PIC X(32) VALUE '12 456
01 LENGTH COMP.
01 CNT COMP.
PROCEDURE DIVISION.
001-BEGIN.

MOVE 6 TO LENGTH.
MOVE -3 TO CNT.
CALL 'RSTR$A' USING STRING1, LENGTH, CNT.
EXHIBIT STRINGL
MOVE 2 TO CNT.
CALL 'RSTR$A' USING STRING1, LENGTH, CNT.
EXHIBIT STRINGL
STOP RUN.

OK CNAME ROTATE.COBOL ROTATE.CBL
OK CBL ROTATE

[CBL Rev. 20.2 Copyright (c) Prime Computer, Inc. 1985]

ERROR 175 SEVERITY 1 LINE 7 COLUMN 8 [OBSERVATION, SEMANTICS]
COMPUTATIONAL items with no picture clause are assumed to be s9(4)

ERROR 17 5 SEVERITY 1 LINE 8 COLUMN 8 [OBSERVATION, SEMANTICS]
COMPUTATIONAL items with no picture clause are assumed to be s9(4)

[2 OBSERVATIONS IN PROGRAM: ROTATE.CBL]
OK BIND -LO ROTATE -LI VCOBLB -LI VAPPLB -LI

[BIND Rev. 20.2 Copyright (c) 1985, Prime Computer, Inc.]
BIND COMPLETE

OK R ROTATE
STRING1 = 45612
STRING1 = 12456
OK

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

1 0 - 2 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

RSUB$A

Purpose

RSUB$A is a logical function used to rotate a character substring left
or right. Only the characters of the substring contained in string are
affected. The parameters are checked for validity. If there is an
error, a message is printed and the function will be .FALSE.. If no
error occurs, the function will be .TRUE..

Usage

INTEGER*2 string(l), length, fchar, lchar, count
LOGICAL log

LOG = RSUB$A(string, length, fchar, lchar, count)
(or)

CALL RSUB$A(string, length, fchar, lchar, count)

Parameters

s t r i n g

INPUT/OUTPUT. String containing substring to be rotated, packed
two characters per halfword. Data type does not matter.

length

INPUT. Length of string in characters,

fchar

INPUT. First delimiting character position of substring,

lchar

INPUT. Last delimiting character position of substring,

count

INPUT. Number of positions to rotate substring. A negative count
causes left rotate, a positive count causes right rotate.

F i r s t E d i t i o n 1 0 - 2 6

R S U B $ A S T R I N G R O U T I N E S

Discussion

This routine uses an algorithm that minimizes temporary storage and
execution time. One word of temporary storage is used and the number
of iterations necessary to rotate a string is equal to the length in
characters of the string. A character is moved directly from its
original position to its final destination position.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by RSUB$A

MCHR$A

1 0 - 2 7 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

SSTR$A

Purpose

SSTR$A is a logical function used to shift a character string left or
right. The string is shifted the specified number of characters, and
the vacated positions are padded with the specified fill character.
Trailing blanks are not included in the shift. If length is less than
0, an error message is printed, the function is .FALSE., and no
characters are shifted. If no error occurs, the function is .TRUE..

Usage

INTEGER*2 string(l), length, count, fil_ch(l)
LOGICAL log

log = SSTR$A(string, length, count, fil_ch)
(or)

CALL SSTR$A(string, length, count, fil_ch)

Parameters

s t r i n g

INPUT/OUTPUT. Character string to be shifted, packed two
characters per halfword. Data type does not matter.

length

INPUT. Length of string in characters. Must be greater than or
equal to 0.

count

INPUT. Number of positions to shift string. A negative count
causes left shift, positive count causes right shift.

fi l _ c h

INPUT. Fill character which will pad the vacated positions.
fil_chis specified in FORTRAN Al format (two characters per
halfword and blank-padded on the right). Data type does not
mat ter.

F i r s t E d i t i o n 1 0 - 2 8

SSTR$A

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by SSTR$A

FSUB$A, MCHR$A, and NLEN$A.

STRING ROUTINES

1 0 - 2 9 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

SSUB$A

Purpose

SSUB$A is a logical function used to shift a character substring left
or right. The substring is shifted the specified number of characters
and the vacated positions are padded with the specified fill character.
Any trailing blanks are included in the shift. The parameters are
checked for validity. An error causes a message to be printed and the
function will be .FALSE.. If no error occurs, the function will be
.TRUE.. (.TRUE. and .FALSE. are the FORTRAN logical values.) If the
substring is null, or length is equal to 0, there will be no shift.

Usages

INTEGER*2 string(1), length, fchar, lchar, count, fil_ch
LOGICAL log

log = SSUB$A(string, length, fchar, lchar, count, fil_ch)
(or)

CALL SSUB$A(string, length, fchar, lchar, count, fil_ch)

Parameters

s t r i n g

INPUT/OUTPUT. String containing substring to be shifted, packed
two characters per halfword. Data type does not matter.

length

INPUT. Length of string in characters,

fchar

INPUT. First delimiting character position of substring,

lchar

INPUT. Last delimiting character position of substring,

count

INPUT. Number of positions to shift substring. A negative count
causes left shift, positive count causes right shift.

F i r s t E d i t i o n 1 0 - 3 0

S S U B $ A S T R I N G R O U T I N E S

fi l _ c h

r

INPUT. Fill character with which to pad vacated positions.
filchar is specified in Al format (two characters per halfword and
right-padded with blanks). Data type does not matter.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by SSUB$A

FSUB$A and MCHR$A.

r
r 1 0 - 3 1 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

TREE$A

Purpose

TREE$A checks a pathname for syntactical correctness

Usage

INTEGER*2 name(l), namlen, fst, flen
L O G I C A L l o g

log = TREE$A(name, namlen, fst, flen)
(or)

CALL TREE$A(name, namlen, fst, flen)

Parameters

name

INPUT. A r ray con ta in ing fi lename, packed two charac te rs pe r
halfword. Data type does not matter.

namlen

INPUT. Length of name in characters.

f s t

OUTPUT. Number returned indicating the character position for the
first character in the final name within name.

fl e n

OUTPUT. Length in characters of the final name within the filename
name.

D iscuss ion

TREE$A is a logical function that scans a filename and checks it for
syntactical correctness. If the pathname is syntactical ly correct, the
func t ion i s .TRUE. and i f no t , i t i s .FALSE. . In add i t i on , the
location of the final name (or entire name if not part of a pathname)
can be determined from the values returned in fst and flen. Note that
if the name is empty, fst and flen are both 0.

The following example illustrates the use of TREE$A from a CBL program.
The program has already been submitted to BIND. Its runfile is located

F i r s t E d i t i o n , U p d a t e 2 1 0 - 3 2

TREE$A STRING ROUTINES

wi th in the cu r ren t subd i rec to ry, a long w i th the source fi le (s l i s t
TREE.CBL). It is now Resumed, and interactively executes as shown.
Fol lowing the example, Figure 10-3 shows the data layout of the
arguments to TREE$A.

Example

OK, SLIST TREE.CBL

r

IDENTIFICATION DIVISION.
PROGRAM-ID. TREE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
0 1 N A M E P I C X (3 2)
0 1 N A M L E N P I C S 9 (4)
0 1 F S T A R T P I C S 9 (4)
0 1 F L E N P I C S 9 (4)
0 1 A S C I I L E N P I C S 9 9 .
PROCEDURE DIVISION.
001-BEGIN.

DISPLAY 'ENTER FILENAME'.
ACCEPT NAME.
DISPLAY 'ENTER LENGTH OF NAME'.
ACCEPT ASCIILEN.
MOVE ASCIILEN TO NAMLEN.
CALL 'TREE$A' USING NAME, NAMLEN,
EXHIBIT NAME.
EXHIBIT NAMLEN.
EXHIBIT FSTART.
EXHIBIT FLEN.
STOP RUN.

VALUE SPACES
COMP.
COMP.
COMP.

FSTART, FLEN,

OK, R TREE.RUN
ENTER FILENAME
ACCTS>DATA>SAMDATA>HOURSWORKED
ENTER LENGTH OF NAME
30
NAME = ACCTS>DATA>SAMDATA>HOURSWORKED
N A M L E N = 3 0
F S T A R T = 2 0
F L E N = 1 1
OK,

10-33 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

fst
A C C T S > D A T A > S A M D A T A > H

namlen
flen

Arguments to TREE$A
Figure 10-3

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by TREE$A

GCHR$A and NLEN$A.

First Edition, Update 2 10-34

STRING ROUTINES

TYPE$A

Purpose

TYPE$A is a logical function that tests a character string to determine
if it can be interpreted as the type specified by key.

Usage

INTEGER*2 key, string(l), length
LOGICAL log

log = TYPE$A(key, string, length)
(or)

CALL TYPE$A(key, string, length)

Parameters

key

INPUT. Indicates the type of test that String will undergo.
Possible keys are:

A$NAME Can string be interpreted as a name?

A$BIN Can string be interpreted as a binary number?

A$DEC Can string be interpreted as a decimal number?

A$OCT Can string be interpreted as an octal number?

A$HEX Can string be interpreted as a hexadecimal number?

s t r i n g

INPUT. The string to be tested, packed two characters per
halfword. Data type does not matter.

length

INPUT. Length of string, in characters.

Discussion

A string is interpreted as a name if it contains at least one
alphabetic or special character other than a leading plus or minus; a
binary number if it contains only the digits 0 through 1; a decimal

1 0 - 3 5 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V T Y P E $ A

number if it contains only the digits 0 through 9. It is an octal
number if it contains only the digits 0 through 7, and is hexadecimal
if it contains only the digits 0 through 9 and the characters A through
F (uppercase only) . A number may have a leading sign and any number of
blanks between the sign and the first digit. However, embedded blanks
within the number itself are not allowed. A number must also have at
least one digit.

Leading and trailing blanks are ignored. The function is .TRUE. if
string satisfies the conditions required by the key used; otherwise it
is .FALSE.. A null string (length equal to 0) will return a function
value of .TRUE. only if key is A$NAME.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by TYPE$A

GCHR$A and NLEN$A.

F i r s t E d i t i o n 1 0 - 3 6

11
User Query

Routines

SUMMARY OF USER QUERY ROUTINES

This chapter describes the following User Query Routines, found in the
APPLICATION subroutines library.

RNAM$A Prompt and read a name.
RNUM$A Prompt and read a number (binary, decimal,

octal, or hexadecimal). INTEGER*4
YSNO$A Ask question and obtain a YES or NO answer,

1 1 - 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

RNAM$A

Purpose

RNAM$A is a logical function that prints the supplied message prompt
and appends a colon (:) to it. It then reads a user response from the
command stream. If the response is not a legal name, or if the name
provided is too long for the supplied buffer, an error message will be
typed and the message prompt will be repeated. If no name is provided,
or if name contains illegal values (such as a digit or a plus or minus
sign), the value of the function will be .FALSE.. If a legal name is
provided, the function value will be .TRUE.. The caller should be
aware that COMANL and RDTK$$ (Volume II) are called to read the user
response, and therefore the previous command line entered is
unavai lable.

Usage

INTEGER*2 msg(l), msglen, namkey
INTEGER*2 name(l), namlen
LOGICAL log

log = RNAM$A(msg, msglen, namkey, name, namlen)
(or)

CALL RNAM$A(msg, msglen, namkey, name, namlen)

Parameters

msg

INPUT. Message text, packed two characters per halfword. Data
type does not matter.

msglen

INPUT. Message length in characters.

namkey

INPUT. Indicates options for character handling. Keys cannot be
combined. Valid keys are:

A$FUPP Force uppercase.

A$UPLW Do not force uppercase.

A$RAWI Read line as raw uninterpreted text.

First Edition 11-2

R N A M $ A U S E R Q U E R Y R O U T I N E S

name

OUTPUT. Returned name, packed two characters per halfword. Data
type is ASCII. It must begin with a non-character that is also not
a plus or a minus sign.

namlen

INPUT. Length of name buffer in characters (maximum 80).

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

1 1 - 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

RNUM$A

Purpose

RNUM$A is a logical function used to accept numeric data from the user
termina l .

Usage

INTEGER*2 msg(l), msglen, numkey
INTEGER*4 value
LOGICAL log

log = RNUM$A(msg, msglen, numkey, value)
(or)

CALL RNUM$A(msg, msglen, numkey, value)

Parameters

msg

INPUT. Message text, packed two characters per halfword. Data
type does not matter.

msglen

INPUT. Message length in characters.

numkey

INPUT. Indicates the data type to be verified. Valid keys are:

A$DEC Decimal

A$BIN B ina ry

A$OCT Octal

A$HEX Hexadecimal

value

OUTPUT. Returned value.

F i r s t E d i t i o n 1 1 - 4

R N U M $ A U S E R Q U E R Y R O U T I N E S

Discussion

The routine prints the user-supplied message and appends the colon (:)
to it. It then reads a user response and if the response is not a
legal number or if the number provided has too many digits for an
INTEGER*4 value, the error will be reported and the message will be
repeated. If no number is provided, the value of the function will be
.FALSE. and value will be 0. If a legal number is provided, the
function will be .TRUE. and the value will be returned in value.

Numbers may be immediately preceded by "+" or "-". Binary numbers may
have a maximum of 31 digits, octal a maximum of 11 digits, decimal a
maximum of 10 digits, and hexadecimal a maximum of 8 digits. Negative
binary, octal, or hexadecimal should not be entered in two's
complement, but the same as a negative decimal number.

The caller should be aware that COMANL and RDTK$$ (see Volume II) are
called to read the user response, and therefore the previous command
line is unavailable.

The operation of this subroutine is shown in Figure 11-1.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

1 1 - 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV RNUM$A

Accept message

Append ":" to message
Display message

How RNUM$A Works
Figure 11-1

First Edition 11-6

USER QUERY ROUTINES

YSNO$A

Purpose

YSNO$A is a logical function that prints the supplied message and
appends the character "?" to it. It then reads a user response. If
the answer is "YES" or "OK", the function returns .TRUE.. If the
answer is "NO", the funct ion value returns .FALSE.. I f an i l legal
answer is provided or i f no default is accepted, the message is
repeated. User responses may be abbreviated to the first one or two
c h a r a c t e r s .

Usage

INTEGER*2 msg(l), msglen, defkey
L O G I C A L l o g

log = YSNO$A(msg, msglen, defkey)

CALL YSNO$A(msg, msglen, defkey)

Parameters

msg

INPUT. Message text, packed two characters per halfword. Data
type does not matter.

msglen

INPUT. Message length in characters.

de fkey

INPUT. A key specifying the default. Valid keys are:

A$NDEF No default accepted.

A$DNO Default is "NO".

A$DYES Default is "YES".

1 1 - 7 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V Y S N O $ A

Example

OK, SLIST YESNOl.PASCAL
program main;

FORTRAN logicals are incompatible with Pascal boolean data types
Therefore, interfacing to the applications library from Pascal
can be a problem. The following program shows the easiest way to
determine True and False when calling FORTRAN subroutines with
l o g i c a l s .

Note: This program assumes that the type of logical returned is
a L0GICAL*2, and only occupies two bytes of memory.

const
%INCLUDE 'SYSCOM>A$KEYS.INS.PASCAL' ;

type
msgtype = packed array[1..8] of char;

var
msg : msgtype;
msglen : integer;

func t ion ysno$a(var s : msgtype; {Pass by re f , msg }
1 : integer; {Pass by value, length of msg }
k : integer) {Pass by value, default keys }

:integer; extern; {Returns FORTRAN logical as integer}

begin
w r i t e l n ;
msg := 'Yes I No';
msglen := 8;
if ysno$a(msg, msglen, a$ndef) = ord(true) then

w r i t e l n (' O k ! ')
else

writeln('Absolutely NO!')
e n d . ,

F i r s t E d i t i o n 1 1 - 8

Y S N O $ A U S E R Q U E R Y R O U T I N E S

This program, stored as YESNOl.PASCAL, may be compiled, loaded, and
executed with the following dialogue.

OK, PASCAL YESNOl
[PASCAL Rev. 20.2.B2 Copyright (c) 1986, Prime Computer, Inc.]
0000 ERRORS [PASCAL Rev. 20.2]
OK, BIND
[BIND Rev. 20.2 Copyright (c) 1985, Prime Computer, Inc.]

LO YESNOl
LI PASLIB
LI VAPPLB
L I

BIND COMPLETE
: FILE
OK, RESUME YESNOl

Yes I No? YES
Ok!
OK, R YESNOl

Yes I No? NO
Absolutely NO!
OK,

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

1 1 - 9 F i r s t E d i t i o n

12
System Information

Routines

SUMMARY OF SYSTEM INFORMATION ROUTINES

This chapter describes the following System Information Routines, found
in the APPLICATION subroutines library.

CTIM$A
DATE$A
DOFY$A
DTIM$A
EDAT$A
TIME$A

CPU time since login.
Today's date, American style.
Today's date as day of year ("Julian" date)
Disk time since login.
Today's date, European (military)style.
Time of day.

12-1 First Edition

SUBROUTINES, VOLUME IV

CTIM$A

Purpose

CTIM$A is a double precision function that returns CPU time elapsed
since login, in seconds as the function value, and as centiseconds in
the cputim argument.

Usage

INTEGER*4 cputim
R E A L * 8 r t _ v a l

rt_val = CTIM$A(cputim)
(or)

CALL CTIM$A(cputim)

Parameters

cputim

OUTPUT. CPU time in centiseconds

Discussion

The function value will be CPU time elapsed since login, in seconds
This value may be received as REAL*8.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

F i r s t E d i t i o n 1 2 - 2

SYSTEM INFORMATION ROUTINES

DATE$A

Purpose

DATE$A is a double-precision function that returns the date in the
argument date in the form "DAY, MON DD YYYY" (for example, TUE, FEB 23
1982) .

The value of the function is the date in the form "MM/DD/YY" (for
example, 02/23/82). This value must be received as REAL*8.

Note that this routine is good for the period January 1, 1977 through
December 31, 2076.

Usage

INTEGER*2 date(16)
R E A L * 8 r t _ v a l

rt_val = DATE$A(date)
(or)

CALL DATE$A(date)

Parameters

date

OUTPUT. Date in the form DAY, MON DD YYYY. The data type does not
matter as long as it is at least 16 characters long.

Loading and Linking Information

'APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

1 2 - 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

DOFY$A

Purpose

DOFY$A is a double-precision function that returns the day of the year
in the form "DDD" in the dofy argument. The value of the function is
the date in the form YR.DDD, suitable for printing in FORMAT F6.3.
This value can be received as either REAL*4 or REAL*8. This routine is
good for the period January 1, 1977 through December 31, 2076.

Usage

INTEGER*2 dofy(l)
R E A L * 8 r t _ v a l

rt_val may also be declared REAL

rt_val = DOFY$A(dofy)
(or)

CALL DOFY$A(dofy)

Parameters

dofy

OUTPUT. Day of year in the form "DDD" ("Julian" date). The data
type does not matter as long as it is at least four characters
long.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

F i r s t E d i t i o n 1 2 - 4

SYSTEM INFORMATION ROUTINES

DTIM$A

Purpose

DTIM$A is a double-precision function that returns disk time since
login as centiseconds is the dsktim argument. The function value will
be disk time since login in seconds. This value may be received as
either REAL*4 or REAL*8.

Usage

INTEGER*4 dsktim
R E A L * 8 r t _ v a l

C rt_val may also be declared REAL*4

rt_val = DTIM$A(dsktim)
(or)

CALL DTIM$A(dsktim)

Parameters

dsktim

OUTPUT. Disk time in centiseconds

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

1 2 - 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

EDAT$A
Purpose

EDAT$A is a double-precision function. It returns the date in the
European (military) form 'DAY, DD MON YEAR' in the argument edate (for
example, TUE, 23 FEB 1982).

The value of the function is the date in the form DD.MM.YY (for
example, 23.03.82). This value must be received in a REAL*8 variable.
The routine is good for the period January 1, 1977 through December 31,
2076.

Usage

INTEGER*2 edate(16)
R E A L * 8 r t _ v a l

rt_val = EDAT$A(edate)
(or)

CALL EDAT$A(edate)

Parameters

edate

OUTPUT. Date in the form "DAY, DD MON YEAR".

Discussion

The data type of the edate array does not matter as long as it is at
least 16 characters long.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by EDAT$A

DATE$A

F i r s t E d i t i o n 1 2 - 6

SYSTEM INFORMATION ROUTINES

TIME$A

Purpose

TIME$A is a double-precision function that returns the time of day in
the form HR:MN:SC. The value of the function is the time of day in
decimal hours. This value may be received as either REAL*4 or REAL*8.

Usage

INTEGER*2 time(8)
R E A L * 8 r t _ v a l

rt_val = TIME$A(time)
(or)

CALL TIME$A(time)

Parameters

time

OUTPUT. Time of day in the form HH:MM:SS, packed two characters
per halfword. Data type does not matter as long as it is at least
eight characters long.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

1 2 - 7 F i r s t E d i t i o n

13
Randomizing Routines

SUMMARY OF RANDOMIZING ROUTINES

This chapter describes the following two Randomizing Routines, found in
the APPLICATION subroutines library.

RAND$A Generate random number and update "seed," based
upon a 32-bit word size and using the Linear
Congruential Method.

RNDI$A Initialize random number generator "seed."

1 3 - 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

RAND$A

Purpose

RAND$A is a random-number generator.

Usage

INTEGER*4 seed
R E A L * 8 r t _ v a l

C rt_val may also be declared REAL*4

rt_val = RAND$A(seed)
(or)

CALL RAND$A(seed)

Parameters

seed

INPUT/OUTPUT. Input is previous seed, output is new seed.

Discussion

RAND$A is a double-precision function that updates a seed to a new seed
based upon the following linear congruential method:

U(I)=FLOAT(K(I))/M

K(I) B*K(I-1) modulo M

B 1 6 8 0 7 . 0

M 2**31-1 = 2147483647.0

B and M are from Lewis, Goodman, and Miller, "A Pseudo-random Number
Generator for the System/360," IBM Systems Journal, vol. 8, no. 2,
1969, pp. 136-145.

K(I-l) is the input value of seed and K(I) is the returned value.

The value of the function is U(I) which represents a probability and is
between 0.0 and 1.0. This value may be received as either REAL*4 or
REAL*8.

F i r s t E d i t i o n 1 3 - 2

R A N D $ A R A N D O M I Z I N G R O U T I N E S

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

1 3 - 3 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

RNDI$A

Purpose

I Initialize random number generator seed.

Usage

INTEGER*4 seed
R E A L * 8 r t _ v a l

C rt_val may be declared REAL

rt_val = RNDI$A(seed)
(or)

CALL RNDI$A(seed)

Parameters

seed

OUTPUT. The time of day. The granularity of the returned time of
day value varies from system to system.

Discussion

RNDI$A is a double-precision function that is used to initialize a
random number generator. The function value is the time of day in
seconds. This value may be received as either REAL*4 or REAL*8. If
the function value is exactly 0, 1234567 and 12345.67 will be returned
instead.

Loading and Linking Information

APPLIB
NVAPPLB —
VAPPLB

R-Mode
V-Mode (unshared)
V-Mode

First Edition, Update 2 13-4

14
Conversion Routines

SUMMARY OF CONVERSION ROUTINES

This chapter describes the following Conversion Routines, found in the
APPLICATION subroutines library.

CASE$A Convert a string from lowercase to upper
case or uppercase to lowercase.

CNVA$A Convert ASCII number to binary.
CNVB$A Convert binary number to ASCII.
ENCD$A Make a number printable if possible.
FDAT$A Convert the DATMOD field (as returned by RDEN$$)

in format DAY, MON DD YYYY
FEDT$A Convert the DATMOD field (as returned by RDEN$$)

in format DAY, DD MON YYYY.
FTIM$A Convert the TIMMOD field (as returned by RDEN$$)

1 4 - 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

CASE$A

Purpose

CASE$A is a logical function that converts a string from uppercase to
lower, or from lowercase to upper. The function will be .FALSE. if
length is less than 0, otherwise .TRUE..

Usage

INTEGER*2 key, string(1), length
LOGICAL log

log = CASE$A(key, string, length)
(or)

CALL CASE$A(key, string, length)

Parameters

key

INPUT. Indicates the desired conversion option. Valid keys are

A$FUPP Convert all alphabetic characters in string from
lowercase to uppercase.

A$FLOW Convert all alphabetic characters in string from
uppercase to lowercase.

s t r i n g

INPUT/OUTPUT. Array containing character string to be converted,
packed two characters per halfword, any data type.

length

INPUT. Length of string in characters.

F i r s t E d i t i o n 1 4 - 2

C A S E $ A C O N V E R S I O N R O U T I N E S

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by CASE$A

GCHR$A and MCHR$A

r 1 4 - 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

CNVA$A

Purpose

CNVA$A is a logical function that converts an ASCII digit string into
its binary value for decimal, octal, and hexadecimal numbers. The
numbers may be expl ici t ly signed. Leading and trai l ing blanks are
ignored, as well as blanks between the sign and the number. However,
blanks within the number are not allowed. If the number converts
successfully, the function is .TRUE, and value is the converted binary
value. If conversion, is not successful, the function is .FALSE. and
va lue i s 0 . No te tha t fo r dec ima l convers ions overflow w i l l be

as unsuccess fu l , whereas fo r oc ta lcons idered
conversions overflow is ignored.

(.TRUE. and .FALSE. are FORTRAN logical values.)

and hexadec ima l

Usage

INTEGER*2 numkey, name(l), namlen
INTEGER*4 value
L O G I C A L l o g

log = CNVA$A(numkey, name, namlen, value)
(or)

CALL CNVA$A(numkey, name, namlen, value)

Parameters

numkey

INPUT. Specifies data type of number to be converted. Possible
values are:

A$DEC Dec ima l

A $ B I N B i n a r y

A $ O C T O c t a l

A$HEX Hexadecimal

name

INPUT. Array containing ASCII digit string, packed two characters
per halfword. Maximum lengths for the input string's original data
type are: b inary, 31; octa l , 11; decimal , 10; hexadecimal , 8.
Maximum does not include leading signs or blanks.

F i r s t Ed i t i on 14-4

C N V A $ A C O N V E R S I O N R O U T I N E S

namlen

INPUT. Length of name in characters,

value

OUTPUT. Returned converted binary value

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by CNVA$A

GCHR$A and NLEN$A

1 4 - 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

CNVB$A

Purpose

CNVB$A is an INTEGER*2 function used to convert a binary number to an
ASCII digit string.

Usage

INTEGER*2 numkey, name(l), namlen
INTEGER*4 value
INTEGER*2 rt_val

rt_val = CNVB$A(numkey, value, name, namlen)
(or)

CALL CNVB$A(numkey, value, name, namlen)

Parameters

numkey

INPUT. Number base to which value is converted. Valid keys are:

A$BIN Binary number with leading blanks

Binary number with leading Os

Signed decimal number with leading blanks

Unsigned decimal number with leading blanks

Signed decimal number with leading Os

Octal number, leading blanks

Octal number, leading Os

Hexadecimal, leading blanks

Hexadecimal, leading Os

A$BINZ

A$DEC

A$DECU

A$DECZ

A$OCT

A$OCTZ

A$HEX

A$HEXZ

value

INPUT Binary number to be converted.

First Edition 14-6

C N V B $ A C O N V E R S I O N R O U T I N E S

name

OUTPUT. Array containing returned ASCII digit string packed two
characters per halfword. Data type does not matter.

namlen

INPUT. Length of name in characters. Maximum length for binary is
31, octal is 11, decimal is 10, and hexadecimal is 8. Maximum does
not include leading signs or Os.

Discussion

CNVB$A converts a binary number into an ASCII digit string for decimal,
octal, and hexadecimal numbers. The returned digit str ing is
right-justified in name and preceded by leading blanks or Os depending
upon numkey specification.

If value is negative and the number is to be treated as signed decimal,
the digit will begin with an initial minus sign. If value is negative,
binary, octal, and hexadecimal numbers will be in two's-complement
form. If the number converts successfully, the function value is the
number of digits and if not, it is 0.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by CNVB$A

FILL$A and MCHR$A

1 4 - 7 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

ENCD$A

Purpose

ENCD$A is a logical function that converts a numeric value to a FORTRAN
format.

Usage

INTEGER*2 array(1), width, dec
R E A L * 8 v a l u e
LOGICAL log

log = ENCD$A(array, width, dec, value]
(or)

CALL ENCD$A(array, width, dec, value)

Parameters

array

OUTPUT. Array to receive value, packed two characters per
halfword. Data type does not matter.

width

INPUT. Field width as in format Fw.d (should be even).

dec

INPUT. Places to right of decimal point as shown in format Fw.d.

value

INPUT. Double-precision value to be encoded (REAL*8).

Discussion

ENCD$A attempts to encode value in the supplied Fw.d format if it will
fit. If not, the dec argument is decremented (moving the decimal point
to the right) until it will fit. If dec reaches 0, or is originally
supplied as 0, value will be encoded in Iw format if the number will
fit into a 32-bit integer. If not, and if the field is wide enough
(width > 7), the value will be encoded in E format. If the field is
not wide enough, it will be filled with asterisks.

F i r s t E d i t i o n 1 4 - 8

ENCD$A CONVERSION ROUTINES

The formats are:

A number that includes a decimal fraction. The d is
the number of digits after the decimal point, and w
is the total number of positions (including the
decimal point) in the field. The maximum is 32767.

An integer, with w digits. Maximum is 32767.

A float ing po in t number in sc ien t ific fo rmat
(xxE+yy), where xx represents the characteristic and
yy is the mantissa or exponent.

Examples are:

Fw.d: 123.4

I : 1 2 3 4 5

E : 1 . 2 3 4 5 6 E + 9 9

Note that the largest value of width is 16. If it is larger than 16,
only the first 16 characters of array are used.

The function returns .TRUE. if the encoding was successful, and
.FALSE. if the field was filled with asterisks. Note that array is
the only argument that is actually modified in the calling program.

Loading and Linking Information

APPLIB
NVAPPLB —
VAPPLB

R-Mode
V-Mode (unshared)
V-Mode

14-9 First Edition

SUBROUTINES, VOLUME IV

FDAT$A

Purpose

FDAT$A is a REAL*8 function that converts the datmod field, returned as
halfword 20 of buffer by RDEN$$, to the format DAY, MON DD YYYY (for
example, TUE, FEB 23 1982).

The function value is the datmod field converted to MM/DD/YY (for
example, 02/23/82). It must be received in a REAL*8 variable. The
routine is good for the period January 1, 1972 to December 31, 2071.

RDEN$$ must be called before this subroutine. Since RDEN$$ is
considered obsolete, this subroutine has limited use.

Usage

INTEGER*2 datmod, date(16)
R E A L * 8 r t _ v a l

rt_val = FDAT$A(datmod, date)
(or)

CALL FDAT$A(datmod, date)

Parameters

datmod

INPUT. Date returned by RDEN$$. This is the date the file was
last modified and is in the format YYYYYYYMMMMDDDDD. YYYYYYY is
the year modulo 100, MMMM is the month, and DDDDD is the day.

date

OUTPUT. Array containing the date as a character string, packed
two characters per halfword. Date is in the DAY, MON DD YEAR
format. Data type does not matter as long as the array is at least
16 characters long.

F i r s t E d i t i o n 1 4 - 1 0

F D A T $ A C O N V E R S I O N R O U T I N E S

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by FDAT$A

CNVB$A

r
_ f p - 1 4 - 1 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

FEDT$A
Purpose

FEDT$A converts the datmod field, returned as halfword 20 of buffer by
RDEN$$, to the DAY, DD MON YEAR format in date (for example, TUE, 23
FEB 1982) . The function value is datmod converted to a DD.MM.YY format
(for example, 23.02.82). It must be received in a REAL*8 variable.
The routine includes the period January 1, 1972 through December 31,
2071.

RDEN$$ must be called before this subroutine. Since
considered obsolete, this subroutine has limited use.

RDEN$$ is

Usage

INTEGER*2 datmod, date(16)
R E A L * 8 r t _ v a l

rt_val = FEDT$A(datmod, date)
(or)

CALL FEDT$A(datmod, date)

Parameters

datmod

INPUT. Date returned by RDEN$$. This is the date that the file
was last modified and is in the format YYYYYYYMMMMDDDDD. YYYYYYY
is the year modulo 100, MMMM is the month, and DDDDD is the day.

date

OUTPUT. Array containing the date as a character string, packed
two characters per halfword. Date is in the 'DAY, DD MON YEAR
format. Data type does not matter as long as the array is at least
16 characters long.

First Edition 14-12

F E D T $ A C O N V E R S I O N R O U T I N E S

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by FEDT$A

FDAT$A

1 4 - 1 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

FTIM$A
Purpose

FTIM$A is a REAL*4 or REAL*8 function that converts the timmod field,
returned as halfword 21 of buffer by RDEN$$, to the HH:MM:SS format.
The function value is the timmod field converted to decimal hours and
may be received as either REAL*4 or REAL*8.

Usage

INTEGER*2 timmod, time(8)
R E A L * 8 r t _ v a l

C rt_val may also be declared REAL

rt_val = FTIM$A(timmod, time)
(or)

CALL FTIM$A(timmod, time)

Parameters

timmod

INPUT. Time at which a file was last modified, formatted as
'seconds since midnight' divided by four.

time

OUTPUT. Array containing the time a file was last modified as a
character string in the format 'HH:MM:SS'. Data type does not
matter as long as array is at least eight characters long.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by FTIM$A

CNVB$A

F i r s t E d i t i o n 1 4 - 1 4

15
File System Routines

SUMMARY OF FILE SYSTEM ROUTINES

This chapter describes the following File System Routines, found in the
APPLICATION subroutines library.

CLOS$A
DELE$A
EXST$A
GEND$A
OPEN$A
OPNP$A
OPNV$A
OPVP$A
POSN$A
RPOS$A
RWND$A
TEMP$A
TRNC$A
TSCN$A
UNIT$A

Close a file.
Delete a file.
Check for file existence.
Pos i t i on t o end -o f - fi l e .
Open supplied name.
Read name and open.
Open supplied name with verification and delay,
Read name and open with verification and delay.
P o s i t i o n fi l e .
Return posit ion of file.
Rewind file.
Open a scratch file with unique name.
Trunca te fi le .
Scan the file system structure.
Check for file open.

r
r 15-1 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

CLOS$A

Purpose

CLOS$A is a logical function that closes the file open on funit. If
the operation is successful, the function is .TRUE.; otherwise, the
function is .FALSE..

Usage

INTEGER*2 funit
LOGICAL*2 log

log = CLOS$A(funit)
(or)

CALL CLOS$A(funit)

Parameters

f u n i t

INPUT. File unit to be closed.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

F i r s t E d i t i o n , U p d a t e 2 1 5 - 2

r D E L E $ A

FILE SYSTEM ROUTINES

r

Purpose

DELE$A is a logical function that deletes the file named in name. If
the operat ion is successful , the funct ion is .TRUE.; otherwise the
function is .FALSE..

Usage

INTEGER*2 name(l), namlen
L0GICAL*2 log

log = DELE$A(name, namlen)
(or)

CALL DELE$A(name, namlen)

Parameters

name

INPUT. Filename (may be a pathname) packed two characters per
halfword. Data type does not matter.

namlen

INPUT. Length of name in characters.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines called by DELE$A

TREE$A, UNIT$A, NLEN$A

1 5 - 3 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

EXST$A
Purpose

EXST$A is a logical function that returns .TRUE. if the file exists
and .FALSE. if the file does not exist or if an error was encountered.

Usage

INTEGER*2 name(l), namlen
I L 0 G I C A L * 2 l o g

log = EXST$A(name, namlen)

CALL EXST$A(name, namlen)

Parameters

name

INPUT. Filename (may be a pathname) packed two characters pe
halfword. Data type does not matter.

namlen

INPUT. Length of name in characters.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by EXST$A

TREE$A, UNIT$A, NLEN$A.

F i r s t E d i t i o n , U p d a t e 2 1 5 - 4

FILE SYSTEM ROUTINES

GEND$A

Purpose

GEND$A is a logical function that positions the file open on funit to
end-of-file. If the operation is successful, the function is .TRUE.,
otherwise, the function is .FALSE..

Usage

INTEGER*2 funit
L0GICAL*2 log

LOG = GEND$A(funit)
(or)

CALL GEND$A(funit)

Parameters

f u n i t

INPUT. PRIMOS file unit whose file is acted upon

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

1 5 - 5 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

OPEN$A
Purpose

OPEN$A is a logical function that opens a file of the given name on
funit. If the operation is successful, the function value is .TRUE.,
and if the operation is unsuccessful, the function value is .FALSE..

Usage

INTEGER*2 opnkey, typkey, untkey
INTEGER*2 name(l), namlen, funit
L0GICAL*2 log

log = OPEN$A(opnkey+typkey+untkey, name, namlen, funit)
(or)

CALL OPEN$A(opnkey+typkey+untkey, name, namlen, funit)

Parameters

opnkey

INPUT. Indicates the desired operation. Valid Keys are:

A$READ Open for reading.

A$WRIT Open for writing.

A$RDWR Open for reading and writing.

t y p k e y

INPUT. Indicates the desired file type. Valid Keys are:

A$SAMF SAM file

A$DAMF DAM file

A$CAMF CAM file

un tkey

INPUT. Indicates how funit is to be handled. Key is:

A$GETU Choose a PRIMOS file unit number to be returned in
funit. Omission of this key requires user input of a
legal file unit number in funit.

F i r s t E d i t i o n , U p d a t e 2 1 5 - 6

O P E N $ A F I L E S Y S T E M R O U T I N E S

name

INPUT. File name (or pathname) packed two characters per halfword.
Data type does not matter.

namlen

INPUT. Length of name in characters.

f u n i t

INPUT/OUTPUT. PRIMOS file unit returned. While always an output,
funit must also input a legal file unit number if A$GETU is not
specified in untkey.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by OPEN$A

TREE$A, UNIT$A, and NLEN$A.

1 5 - 7 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

OPNP$A
Purpose

OPNP$A is a logical function that gets a name from the user and opens
it on funi t . I f the operat ion is successful , the funct ion value is
.TRUE. and if the operation is unsuccessful or no name is supplied,
the function value is .FALSE..

Usage

INTEGER*2 msg(l), msglen, opnkey, typkey, untkey
INTEGER*2 name(l), namlen, funit
L0GICAL*2 log

log = OPNP$A(msg, msglen, opnkey+typkey+untkey, name, namlen,
x f u n i t)

(or)
CALL OPNP$A(msg, msglen, opnkey+typkey+untkey, name, namlen,

x f u n i t)

Parameters

msg

OUTPUT. Array containing prompt for name message, packed two
characters per halfword. Data type does not matter.

msglen

INPUT. Length of msg in characters.

opnkey

INPUT. Indicates the desired operation. Key values may be:

A$READ Open for reading.

A$WRIT Open for writing.

A$RDWR Open for reading and writing.

F i r s t E d i t i o n , U p d a t e 2 1 5 - 8

O P N P $ A F I L E S Y S T E M R O U T I N E S

typkey

INPUT. Indicates the type of file. Key values may be:

A$SAMF SAM file

A$DAMF DAM file

untkey

INPUT. Indicates how funit is to be used. Key is:

A$GETU Choose a PRIMOS file unit number to be returned in
funit. Omission of this key requires that the caller
input a unit number in funit.

name

OUTPUT/INPUT. Filename (or pathname) packed two characters per
halfword. Data type does not matter.

namlen

INPUT. Length of name in characters.

f u n i t

INPUT/OUTPUT. PRIMOS file unit returned. While always an output,
funit must also input a legal file unit number if A$GETU is not
specified in untkey.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by OPNP$A

RNAM$A, NLEN$A, TREE$A, and UNIT$A,

1 5 - 9 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

OPNV$A

Purpose

OPNV$A is a logical function that opens a file of the given name on
funit. Note that the functions of verification and delay as described
here are different from those in the File System Subroutines in Volume
I I .

Usage

INTEGER*2 opnkey, typkey, untkey
INTEGER*2 name(l), namlen, funit
INTEGER*2 verkey, wtime, retry
L0GICAL*2 log

log = OPNV$A(opnkey+typkey+untkey, name, namlen, funit,
x v e r k e y , w t i m e , r e t r y)

(or)
CALL OPNV$A(opnkey+typkey+untkey, name, namlen, funit,

x v e r k e y , w t i m e , r e t r y)

Parameters

opnkey

INPUT. Indicates the desired operation. Valid keys are:

A$READ Open for reading.

A$WRIT Open for writing.

A$RDWR Open for reading and writing.

typkey

INPUT. Indicates the type of file. Valid keys are:

A$SAMF SAM file

A$DAMF DAM file

untkey

INPUT. Indicates how to handle funit. Key is:

A$GETU Choose a PRIMOS file unit number to be returned in
funit. Omission of this key requires that the caller
input a valid unit number in funit.

F i r s t E d i t i o n , U p d a t e 2 1 5 - 1 0

OPNV$A FILE SYSTEM ROUTINES

name

INPUT. Filename (may be a pathname) packed two characters per
halfword. Data type does not matter.

namlen

INPUT. Length of name in characters. If namlen is 0 or less, the
function value is .FALSE..

f u n i t

INPUT/OUTPUT. PRIMOS file unit returned. While always an output,
funit must also input a legal file unit number if A$GETU is not
specified in untkey.

verkey

INPUT. Indicates type of verification procedure to follow during
execution of this routine. Valid keys are:

A$NVER No verification.

A$VNEW Verify new or ask if OK to modify old file.

A$OVAP Same as A$VNEW except user is prompted to "OVERWRITE"
or "APPEND" if file already exists.

A$VOLD Verify old; return .FALSE. if not old file.

wtime

INPUT. Number of seconds to wait if FILE IN USE.

r e t r y

INPUT. Number of times to retry if FILE IN USE.

Discussion

If wtime and retry are specified as nonzero, and the file to be opened
is IN USE, the open is retried the specified number of times, with
wtime seconds (elapsed time) between each attempt. If the number of
retries expires, or if either wtime or retry is initially 0 and the
file is IN USE, the function returns .FALSE..

Loading and Linking Information

APPLIB
NVAPPLB —
VAPPLB

R-Mode
V-Mode (unshared)
V-Mode

15-11 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

Other Routines Called by OPNV$A

RNAM$A, TIME$A, NLEN$A, EXST$A, UNIT$A, TREE$A, and GEND$A,

Ve r i fi c a t i o n

If verification is not requested (verkey = A$NVER), OPNV$A is identical
in function to OPEN$A. If verification is requested (verkey other than
A$NVER), the following actions will be taken according to the value of
verkey:

A$VNEW

A$OVAP

A$VOLD

If the file already exists and opnkey is either
A$WRIT or A$RDWR, the user is asked if it is OK to
modify the old file. If the answer is "NO", the
function returns .FALSE.. If the answer is "YES",
the file is opened.

This is the same as A$VNEW except that if an old
file is to be modified, the user is also asked if
the file should be overwritten or appended. If the
answer is "APPEND", the file is positioned to end of
fi l e .

This is the default case if opnkey = A$READ. If any
other key is specified, and if the named file does
not already exist, a new file is not created and the
function returns .FALSE..

Errors

If any errors not covered above occur while opening the file or
positioning it (A$OVAP), the function returns .FALSE.. If the open is
ultimately successful, the function returns .TRUE..

First Edition, Update 2 15-12

f* OPVP$A

FILE SYSTEM ROUTINES

r

Purpose

OPVP$A is a logical function that gets a filename from the user and
opens it on funit. Note that the functions of verification and delay
as described below perform differently from the File System Subroutines
in Volume II.

Usage

INTEGER*2 msg(l), msglen, opnkey, typkey, untkey
INTEGER*2 name(l), namlen, funit
INTEGER*2 verkey, wtime, retry
L0GICAL*2 log

log = OPVP$A(msg, msglen, opnkey+typkey+untkey, name(l),
x n a m l e n , f u n i t , v e r k e y , w t i m e , r e t r y)

(or)
CALL OPVP$A(msg, msglen, opnkey+typkey+untkey, name(l),

x n a m l e n , f u n i t , v e r k e y , w t i m e , r e t r y)

Parameters

msg

INPUT. Array containing prompt message, packed two characters per
halfword. Data type does not matter.

msglen

INPUT. Length of msg in characters.

opnkey

INPUT. Indicates desired operation. Valid keys are:

A$READ Open for reading.

A$WRIT Open for writing.

A$RDWR Open for reading and writing.

typkey

Indicates type of file being accessed. Valid keys are:

A$SAMF SAM file

A$DAMF DAM file

1 5 - 1 3 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

untkey

INPUT. Indicates how to handle funit. Key is:

A$GETU Choose a file unit number to be returned in funit.
Omission of this key requires the routine to input a
valid file unit number in funit.

name

OUTPUT. Array containing filename (may be pathname), packed two
characters per halfword. Data type does not matter.

namlen

INPUT. Length of name in characters. If namlen is 0 or less, the
function value is .FALSE..

f u n i t

INPUT/OUTPUT. Primos file unit returned. While always an output,
funit must also input a legal file unit number if A$GETU is not
specified in untkey.

ve rkey

INPUT. Indicates the verification option desired. Valid keys are:

A$NVER No ver ificat ion.

A$VNEW Verify new file or ask if OK to modify old file.

A$OVAP Same as A$VNEW except user is prompted to "OVERWRITE"
or "APPEND" if file already exists.

A$VOLD Verify old. Function value is .FALSE. if not old.

wtime

INPUT. Number of seconds to wait if FILE IN USE.

r e t r y

INPUT. Number of times to retry if FILE IN USE.

F i r s t E d i t i o n , U p d a t e 2 1 5 - 1 4

OPVP$A FILE SYSTEM ROUTINES

Discussion

If wtime and retry are specified as nonzero, and the file to be
opened is IN USE, the open will be retried the specified number of
times, with wtime seconds (elapsed time) between attempts. If the
number or retries expires, or if either wtime or retry is initially
0 and the file is in use, the function returns .FALSE..

r

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by OPVP$A

RNAM$A, TIME$A, NLEN$A, EXST$A, UNIT$A, TREE$A, and GEND$A.

Ve r i fi c a t i o n

If ver ificat ion is requested, the fol lowing
actions, according to the value of verkey:

are the possible

A$VNEW

r A$OVAP

A$VOLD

If the file already exists and opnkey is A$WRIT
or A$RDR, the user will be asked if it is OK to
modify the old file. If the answer is "NO", the
function returns .FALSE.. If "YES", the file is
opened.

If an old file is to be modified (as answered
"YES" for A$VNEW), the user is also asked if the
file should be overwritten or appended. If the
answer is "APPEND", the file will be positioned
to end of file.

Default case if opnkey = A$READ. If any other
key is specified, and if the named file does not
already exist, a new file will not be created
and the prompt message will be repeated.

r
r 15-15 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

Errors

If any errors not covered above occur while opening the file or
positioning it (A$OVAP), or a name is not supplied when requested, the
function returns .FALSE.. If the open is ultimately successful, the
function returns .TRUE..

F i r s t E d i t i o n , U p d a t e 2 1 5 - 1 6

FILE SYSTEM ROUTINES

r

POSN$A

Purpose

POSN$A is a logical function that positions the file open on funit to
the specified posi t ion. I f the operat ion is successfu l , the funct ion
is .TRUE., and if unsuccessful, the function is .FALSE..

Usage

INTEGER*2 poskey, funit
INTEGER*4 pos
L0GICAL*2 log

log = POSN$A(poskey, funit, pos)
(or)

CALL POSN$A(poskey, funit, pos)

Parameters

poskey

INPUT. Indicates the desired position. Valid keys are

A$ABS Abso lu te pos i t i on

A $ R E L R e l a t i v e p o s i t i o n

f u n i t

INPUT. PRIMOS file unit to which the file is assigned,

pos

INPUT. The position (relative or absolute).

Loading and Linking Information

APPL IB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

1 5 - 1 7 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

RPOS$A

Purpose

RPOS$A is a logical function that returns the current absolute position
of the file open on funit. If the operation is successful, the
function is .TRUE.; otherwise the function is .FALSE..

Usage

INTEGER*2 funit
INTEGER*4 pos
L0GICAL*2 log

log = RPOS$A(funit, pos)
(or)

CALL RPOS$A(funit, pos)

Parameters

f u n i t

INPUT. PRIMOS file unit opened on the file being queried,

pos

OUTPUT. Returned absolute position.

Loading and Linking Information

APPLIB
NVAPPLB
VAPPLB

R-Mode
V-Mode (unshared)
V-Mode

First Edition, Update 2 15-11

FILE SYSTEM ROUTINES

r

r
r

RWND$A

Purpose

RWND$A is a logical function that rewinds the file open on funit. If
the operat ion is successful , the funct ion is .TRUE. Otherwise the
function is .FALSE..

Usage

INTEGER*2 funit
LOGICAL*2 log

log = RWND$A(funit)
(or)

CALL RWND$A(funit)

Parameters

f u n i t

INPUT. PRIMOS file unit holding file to be rewound.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

1 5 - 1 9 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

TEMP$A
Purpose

This routine opens a unique temporary file in the current directory for
reading and writing. This file will be named T$_____x where xxxx is a
four-digit decimal number between 0000 and 9999 inclusive. The actual
name opened will be returned in the name buffer. If the operation is
successful, the function value is .TRUE. and if the operation is
unsuccessful, the function value is .FALSE..

Usage

INTEGER*2 typkey, untkey, name(6), namlen, funit
LOGICAL*2 log

log = TEMP$A(typkey+untkey, name, namlen, funit)
(or)

CALL TEMP$A(typkey+untkey, name, namlen, funit)

Parameters

typkey

INPUT. Indicates the file type to be loaded into the unique
temporary file. Valid keys are:

A$SAMF SAM file

A$DAMF DAM file

untkey

INPUT. Indictes how to handle funit. Key is:

A$GETU Choose a file unit number to be returned in funit. If
A$GETU is omitted, the caller must input a valid file
unit number in funit.

name

OUTPUT. Returned name (six characters, packed two characters per
halfword). Data type does not matter.

namlen

INPUT. Length of name buffer in characters (must be at least six).

F i r s t E d i t i o n , U p d a t e 2 1 5 - 2 0

T E M P $ A F I L E S Y S T E M R O U T I N E S

r

f u n i t

INPUT/OUTPUT. Indicates the file unit. While always given for
output, it is only required for input if (A$GETU) has been omitted
from untkey.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by TEMP$A

FILL$A

1 5 - 2 1 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

TRNC$A

Purpose

TRNC$A is a logical function that truncates the file open on funit. If
the operation is successful, the function is .TRUE.; otherwise the
function is .FALSE.

Usage

INTEGER*2 funit
LOGICAL*2 log

log = TRNC$A(funit)
(or)

CALL TRNC$A(funit)

Parameters

f u n i t

INPUT. PRIMOS file unit holding the file to be truncated.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

F i r s t E d i t i o n , U p d a t e 2 1 5 - 2 2

_ ^ F I L E S Y S T E M R O U T I N E Sc
r

r

r
r

TSCN$A

Purpose

TSCN$A is a logical function that scans the file system tree structure
(starting with the home directory). It uses the file subroutines
RDEN$$ and SGDR$$ to read directory and segment directory entries into
the entry array.

Usage

INTEGER*2 key, funits(1), entry(1,1)
INTEGER*2 maxsiz, entsiz, maxlev, lev, code
L0GICAL*2 log

log = TSCN$A((key, funits, entry, maxsiz, entsiz, maxlev,
x l e v , c o d e)

(or)
CALL TSCN$A(key, funits, entry, maxsiz, entsiz, maxlev,

x l e v , c o d e)

Parameters

key

INPUT. Indicates the desired scan. Valid keys are

A$TREE Scan full tree.

A$NUFD Do not scan subdirectories.

A$NSEG Do not scan segment directories.

A$CUFD Scan current directory only.

A$DLAY Pause when popping up to directory,

f u n i t s

INPUT. Array of unit numbers maxlev long.

1 5 - 2 3 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

e n t r y

OUTPUT. Array maxsiz * maxlev long.

Caut ion

The above two-dimensional array may be passed from a FORTRAN
program only.

maxsiz

INPUT. Size of each entry in entry array,

e n t s i z

INPUT. Set to size of current entry,

maxlev

INPUT. Maximum number of levels to scan,

l e v

OUTPUT. Current level.

code

OUTPUT. Standard return code of 0 for success or one of the
standard error codes.

D iscuss ion

Each call to TSCN$A returns the next file on the current level or the
first file on the next lower level of the structure. The variable lev
is used to keep track of the current level. For example, after the
first call to TSCN$A (with lev=0), lev will be returned as 1, and
entry(1,1) wi l l conta in the d i rectory ent ry descr ib ing the firs t fi le
in the home directory. If this file is a subdirectory, fol lowing the
next call to TSCN$A lev will be 2, and entry(1,2) will contain the
entry for the first file in the subdirectory. Thus, for the directory
represented in Figure 15-1, TSCN$A in a loop would return the names in
the order shown in Figure 15-2.

The values of key have the following meanings:

A $ T R E E A l l e n t r i e s i n t h e d i r e c t o r y s t r u c t u r e a r e r e t u r n e d
up to max lev leve ls deep. (Leve ls be low leve l
maxlev are ignored.)

F i r s t E d i t i o n , U p d a t e 2 1 5 - 2 4

TSCN$A FILE SYSTEM ROUTINES

A$NUFD When a subdirectory is encountered (in the home
directory), i ts entry is returned, but no files
under that subdirectory are returned. In the
absence of segment directories, this effectively
limits the scan to the home directory.

A$NSEG

A$CUFD

Files inside segment directories are not returned.

This is a logical combination of A$NUFD and A$NSEG
— only files in the home directory are returned.

A$DLAY This key is identical to A$TREE except that
directory entries are returned twice, once on the
way down (as for A$TREE), and again on the way up.
(This is necessary, for example, to implement a
tree-delete function since a directory cannot be
deleted until it has been emptied.)

SUBROUTINES

SOURCE GATE REFRIED NONPOISONOUS

1
1

BLUE GREEN OBSOLETE

A Directory to be Searched by TSCN$A
Figure 15-1

SOURCE
SOURCE > BLUE
SOURCE > GREEN
GATE
GATE > OBSOLETE
NONPOISONOUS
REFRIED
OK,

Result of TSCN$A Sample Program on Figure 15-1
Figure 15-2

15-25 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

The following items should be considered when using TSCN$A:

1. For the first call of TSCN$A, lev should be equal to 0.
Thereafter it should not be modified until EOF is reached on
the top level directory at which point lev will be reset to 0.

2. The entries in the entry array are in RDEN$$ format. For
entries inside a segment directory, all information from the
directory entry is first copied down a level. Entry(2,lev) is
set to 0 and entry(3,lev) is then set to a 16-bit entry number.
For nested segment directories, the type field of the entry is
set appropriately by opening the file with SRCH$$. (The file
is then immediately closed again.)

3. The parameter entsiz is set to the number of halfwords returned
by RDEN$$. Inside segment directories, it should be ignored.

4. The type fields in the entry array — entry(20,1) — should not
be modified. (TSCN$A uses them to walk up and down the tree.)

5. When TSCN$A requires a file unit, it uses units(lev). By using
the RDEN$$ and SGDR$$ read-position and set-position functions
carefully, it is possible to reuse file units dynamically.

6. TSCN$A returns .TRUE. until a non-file system code is returned
or until E$EOF is returned with lev=0 (top level). E$EOF on
lower levels of the structure is suppressed, and code is
returned as 0.

7. TSCN$A requires owner rights in the home directory.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

First Edit ion, Update 2 15-2 6

TSCN$A

Example

FILE SYSTEM ROUTINES

The following FORTRAN program illustrates how TSCN$A can be used to
perform a directory LISTF. The previous figures, 15-1 and 15-2, show
the results of the program run in a sample directory.

$INSERT SYSCOM>ERRD.INS.FTN
$INSERT SYSCOM>KEYS.INS.FTN
$INSERT SYSCOM>A$KEYS.INS.FTN
C

INTEGER MAXLEV,MAXSIZ
PARAMETER (MAXLEV=16) /* MAXIMUM LEVELS TO SCAN
PARAMETER (MAXSIZ=24) /* MAXIMUM SIZE OF EACH SLICE IN ENTRY
INTEGER I,L,ENTRY(MAXSIZ,MAXLEV),UNITS(MAXLEV),CODE,NLEV$A
LOGICAL TSCN$A
DATA UNITS/1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 /

C
10
100

C
105

C
150

C
170
200

L = 0 / * I N I T I A L I Z E L E V E L C O U N T E R
IF(TSCN$A(A$TREE,UNITS,ENTRY,MAXSIZ, I,MAXLEV,L,CODE))GOTO 105
IF (CODE.NE.E$EOF) CALL ERRPR$(E$NRTN, CODE, 0, 0, 0, 0)
CALL EXIT
GOTO 10

/* ALL DONE IF E$EOF
/* RESTART IF 'S' TYPED

DO 200 1=1,L
IF (ENTRY(2,I).EQ.O)

/* CONSTRUCT PATHNAME
GOTO 150/* BRANCH IF SEGDIR

CALL TNOUA(ENTRY(2,1), NLEN$A(ENTRY(2,I), 32))
GOTO 170

CALL TNOUA('(', 1) /*
CALL TODEC(ENTRY(3,1))
CALL TNOUA(') ', 1)

FORMAT SEGDIR ENTRY NUMBER

IF (I.NE
CONTINUE

CALL TONL
GOTO 100
END

L) CALL TNOUA(' > 3)/* PATHNAME SEPARATOR

r
r 15-27 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

UNITS A

Purpose

UNIT$A is a logical function that returns .TRUE
open and .FALSE. if it is not open.

i f a fi l e u n i t i s

Usage

INTEGER*2 funit
LOGICAL*2 log

log = UNIT$A(funit)
(or)

CALL UNIT$A(funit)

Parameters

f u n i t

INPUT. PRIMOS file unit whose open status is being queried.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

First Edition, Update 2 15-28

16
Parsing Routine

PARSING ROUTINE

This chapter describes the command line Parsing Routine CMDL$A, found
in the APPLICATION subroutines library. The subroutine description
includes a thorough discussion of strategies for using this subroutine.
Examples are included.

1 6 - 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

CMDL$A
Note

For Pascal and PL/I programmers, CMDL$A is obsolete and has
been replaced with CL$PIX.

Purpose

CMDL$A is a logical function for parsing a PRIMOS command line. CMDL$A
is designed to facilitate the design and implementation of user
interfaces in a program. It provides a means to break a character
string into tokens (words or expressions) and return information
regarding each token.

Usage

INTEGER*2 key, kwlist(l), kwindx, optbuf(l)
INTEGER*2 buflen, option, kwinfo(lO)
INTEGER*4 value
LOGICAL log

log = CMDL$A(key, kwlist, kwindx, optbuf, buflen, option,
x v a l u e , k w i n f o)

(or)
CALL CMDL$A(key, kwlist, kwindx, optbuf, buflen, option,

x v a l u e , k w i n f o)

Parameters

key

INPUT. Indicates the desired subroutine function. Valid keys are:

A$READ Return the next keyword entry in the command line.

A$NEXT Call COMANL to get the next command line, turn on
default processing, and return the first keyword entry
in the new command line.

A$RSET Reset the command line pointer to the beginning of the
command line and turn on default processing. Use of
this key does not return a keyword entry.

First Edition 16-2

CMDL$A PARSING ROUTINE

A$RAWI Return the remainder of the command line as raw text
and turn on the end-of-line indicator. Text starts at
the token following the option (if present) of the
last keyword entry read.

A$NKWL Turn on default processing and return the next keyword
entry in the command line. This key allows the
calling program to switch keyword lists in the middle
of a command line.

A$RCMD Permits the use of a keyword without a preceding minus
sign as the first token on a line (may only be used
for lines subsequent to the initial command line).

k w l i s t

INPUT. A one-d imensional in teger array conta in ing contro l
information, a table of keyword entry descriptions, and a list of
default keywords. See Kwlist Format later in this chapter for a
complete description.

kwindx

OUTPUT. A keyword index returned as an INTEGER*2 variable
identifying the keyword in an entry. Possible values are:

< 0 Unrecognized keyword or CMDL$A was called with a key
of A$RSET or A$RAWI.

0 E n d o f l i n e .

> 0 Val id keyword.

optbuf

INPUT. Packed array that normally contains the text of a keyword
option. However, if an unrecognized keyword is encountered, optbuf
contains the text of that keyword. The data type does not matter.

buflen

INPUT. Specified length of optbuf in characters. It must be 0 or
greater.

16-3 First Edition

S U B R O U T I N E S , V O L U M E I V C M D L $ A

opt ion

OUTPUT. Returned INTEGER*2 variable that describes the option
following a keyword. Possible values are:

A$NONE No option, or option was null, optbuf will be blank.

A$NAME option was a name.

A$NUMB option was a number, result of numeric conversion
returned in value.

A$NOVF option was a number and conversion resulted in
overflow (decimal numbers only)

value

OUTPUT. Returned INTEGER*4 variable equal to the binary value of
an option if it was a number. Otherwise, it is 0.

kwinfo

OUTPUT. A ten-halfword integer array that returns miscellaneous
information and must be dimensioned in the calling program.
kwinfo(1) is equal to the number of characters in optbuf and
kwinfo(2) through ________(10) are reserved for future use.

Discussion

CMDL$A was designed to simplify the processing of a PRIMOS command line
while, at the same time, providing the user with a great deal of
flexibility in defining the command environment.

This routine will parse a command line, one keyword entry at a time,
and return information about each entry it encounters. A keyword entry
is defined as a -keyword followed by an option. A default keyword
entry is defined as an option that is not preceded by a -keyword but,
by virtue of its position in the command line, implies a specified
-keyword (e.g., FTN SNARF, where SNARF implies the default keyword
-INPUT). Defaults may only occur at the beginning of a command line.

CMDL$A returns the following information for each keyword entry in the
command line:

• Integer that identifies the -keyword (kwindx)

• Text of the keyword option, if present (optbuf)

• Option type (option)

F i r s t E d i t i o n 1 6 - 4

C M D L $ A P A R S I N G R O U T I N E

• Results of numeric conversion, if option was a number (value)

• Number of characters in the text of an option (kwinfo(1))

Note

CMDL$A does not perform any action other than returning
information about the command line.

Loading and Linking Information

APPLIB — R-Mode
NVAPPLB — V-Mode (unshared)
VAPPLB — V-Mode

Other Routines Called by CMDL$A

CNVA$A, CNVB$A, CSUB$A, FILL$A, JSTR$A, MSUB$A, MSTR$A, NLEN$A and
SSUB$A.

Defining a Command Environment

The following is a list of considerations that should be taken into
account when defining a command environment:

1. A keyword may have, at most, one option following it.

2. A keyword must begin with a dash (-).

3. A keyword may not be a decimal number (e.g., -99).

4. Register-setting parameters (described with the R-mode EXECUTE
command in the LOAD and SEG Reference Guide) are not
recognized.

5. Default keywords are only allowed at the beginning of a command
l ine. The first -keyword encountered turns off defaul t
processing and all remaining options on the command line must
be preceded by a -keyword. (This restr ict ion can be
circumvented by using a key of A$NKWL; however the user must
be aware of the fact that when default processing is in effect
each option is treated as if it were preceded by a -keyword.)

6. A key of A$RAWI (or an option type of A$RAWI) will turn on the
end-of-line indicator and any further attempts to read from the
current command line will return an end-of-line condition. To
turn off the end-of-line indicator, CMDL$A must be called with
a key of A$RSET or A$NEXT.

1 6 - 5 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V C M D L $ A

7. A buffer length that is too small to contain the text of an
option will cause that option to be truncated and an error
message to be displayed.

8. Default keyword entries that have a numeric option should be
avoided as PRIMOS may intercept them as register settings.

9. A negative hexadecimal option that consists only of alphabetic
characters (such as -FF) is always interpreted as a -keyword.

10. Keyword entries in the keyword table with the same keyword
index are considered synonyms. A keyword may have any number
of synonyms, each with di fferent opt ion specificat ions.
However, if a keyword with synonyms is also a default and
default processing is in effect, the option specifications for
the synonyms is ignored. (In other words, a default keyword
option always implies the first keyword in a synonym chain.)

11. Null entries in the command line are only permitted for
keywords that have an option status of A$OPTL. All other null
entries will be treated as either a missing option or an
unrecognized keyword.

12. Calls to CMDL$A and RDTK$$ on the same command line should be
avoided, as CMDL$A uses RDTK$$ to perform a look ahead when a
-keyword is encountered.

13. All text is forced to uppercase unless enclosed in quotes or
read as raw text (A$RAWI).

Kwlist Format

The kwlist array consists of three sections. The first section
contains control information, the second contains the keyword entry
table, and the third contains the default list.

F i r s t E d i t i o n 1 6 - 6

CMDL$A PARSING ROUTINE

Control Information

Word 1

Word 2

Number (n) of keyword entries in table, must be
greater than 0.

Maximum length of keyword text in characters, must
be greater than or equal to 2 and not more than 80.
All keywords must have the same length and therefore
it may be necessary to pad them with blanks.

Keyword Entry Table

Words 1 to n

Word n+1

Word n+2

Word n+3

Word n+4

Te x t o f k e y w o r d . T h e a c t u a l n u m b e r o f
cha rac te rs mus t be equa l t o t he max imum
keyword length.

Keyword index, must be greater than 0.

Minimum number of characters in the keyword to
match, including leading minus sign. The number
must be no less than 2 and no greater than the
maximum keyword length. A 0 or negative value
causes the keyword to be ignored when the table is
searched. This allows keyword text to exist as
documentation.

Option status; possible values are:

A$NONE No option may follow keyword.

A$OPTL option may or may not follow keyword.

A$REQD option must follow keyword.

Option type; possible values are:

A$NONE If status is A$NONE.

A$BIN option must be a binary number.

A$DEC option must be a decimal number.

A$OCT option must be an octal number.

A$HEX option must be a hexadecimal number.

A$NAME, option must be a name.

A$NBIN option may be a name oroption may be a
number.

b inary

16-7 First Edition

SUBROUTINES, VOLUME IV CMDL$A

A$NDEC option may be a name or a decimal
number.

A$NOCT option may be a name or an octal
number.

Default List

A$NHEX option may be a name or a hexadecimal
number. If the option consists of all
a lphabe t i c charac te rs , wh ich a lso
constitute a valid hexadecimal number,
it will be interpreted as such — for
example, FACE.

A$RAWI option is the remainder of the command
line after the current -keyword is read
as raw text. Use of this option will
turn on the end-of-line indicator in
the same manner as a key of A$RAWI.

Word 1 Number (n) of default keywords, must be greater than
or equal to 0.

Words 2 to n+1 List of keyword indices, previously defined in the
keyword entry table, which will be used when default
processing is in effect. A default keyword entry
may not have an option status of A$NONE.

Error Messages

The function value will be false if any of the following errors occur:

BAD KEY
BUFFER LENGTH LESS THAN ZERO
NAME TOO LONG. (name text)
UNRECOGNIZED KEYWORD. (keyword text)
BAD KEYWORD OPTION. (option text)
MISSING KEYWORD OPTION.
NO. OF KEYWORD ENTRIES MUST BE .GT. ZERO.
MAX KEYWORD LENGTH MUST BE .GE. 2 AND .LE. 80.
1ST CHARACTER OF KEYWORD MUST BE '-'. (keyword text)
KEYWORD MAY NOT BE A NUMBER. (keyword text)
KEYWORD INDEX MUST BE .GT. ZERO. (keyword text)
MIN CHARACTERS TO MATCH MUST BE .LE. MAX KEYWORD LENGTH.

(keyword text)
INVALID OPTION STATUS. (keyword text)
INVALID OPTION TYPE. (keyword text)
NO. OF DEFAULTS MUST BE .GE. ZERO.
DEFAULT NOT DEFINED IN KEYWORD LIST. (default index)
INVALID DEFAULT OPTION STATUS. (keyword text)
MIN CHARACTERS TO MATCH MUST BE .GE. 2. (keyword text)
UNDETERMINED ERROR> (text of last keyword or option read)

First Edition 16-8

C M D L $ A P A R S I N G R O U T I N E

Example(s)

C TEST PROGRAM FOR CMDL$A
C

IMPLICIT INTEGER*2 (A-Z)
INTEGER*4 VALUE
DIMENSION BUFFER(10),KWLIST(128) , INFO(10)

$INSERT SYSCOM>A$KEYS
C

DATA KWLIST /11,14,
* '*max chars: 14',1,0,A$REQD,A$DEC,
* '-NDECIMAL',2,2,A$OPTL,A$NDEC,
* '-OCTAL',4,2,A$REQD,A$OCT,
* '-NOCTAL',4,3,A$OPTL,A$NOCT,
* '-HEXADECIMAL',5,2,A$REQD,A$HEX,
* '-NHEXADECIMAL',6,3,A$OPTL,A$NHEX,
* '-NAME',7,5,A$REQD,A$NAME,
* '-MAYBE',8,6,A$OPTL,A$NAME,
* ' -NONE',9,5,A$NONE,A$NONE,
* '-QUIT',10,2,A$NONE,A$NONE,
* '-TITLE',99,2,A$OPTL,A$RAWI,
* 4,1,2,8,7/

C
C

BUFLEN =20
KEY = A$READ

10 IF (CMDL$A(KEY,KWLIST,KWINDX,BUFFER,BUFLEN,TYPE,VALUE,INFO))
*GO TO 15
PRINT 99

99 FORMAT(/'TRY AGAIN,TURKEY !')
CALL EXIT

15 IF (KWINDX.EQ.10) CALL EXIT
IF (KWINDX.NE.A$NONE) GO TO 20
KEY = A$NEXT
GO TO 10

20 KEY = A$READ
PRINT 100 BUFFER,KWINDX,TYPE,VALUE,INFO(1)

100 FORMAT(/10A2/'KWINDX TYPE VALUE CHARS'/2X,4(13,6X))
GO TO 10
END

1 6 " 9 F i r s t E d i t i o n

PARTV

SORT LIBRARIES AND
FORTRAN MATRIX LIBRARY

17
Sort Libraries

GENERAL OVERVIEW

Part V of this Volume presents descriptions of the Sort Libraries and
the MATHLB (Matrix) Library. Chapter 17 describes several sort
subroutines available to the user in either R-Mode or V-Mode libraries.
Chapter 18 describes the R-Mode subroutines available in MATHLB.

SORT SUBROUTINE LIBRARIES

PRIMOS contains many subroutines for performing disk or internal sorts.
These subroutines are contained in four libraries:

• VSRTLI

• SRTLIB

• VMSORT

• MSORTS

After a brief survey of these libraries, there is a summary of the
subroutines in each library, followed by important information on
records, collating sequence, keys, tag/nontag sorts, and the use of
open file units. Finally, each sort routine receives a detailed
descr ip t ion .

1 7 - 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

VSRTLI: is the V-mode sort library. It contains the routine SUBSRT,
which sorts a single input file on ASCII keys, and the routine ASCS$$,
that sorts and merges up to 10 input files and handles a variety of key
types. These two routines accept larger records and more keys than
their corresponding R-mode versions, which are located in SRTLIB. Both
SUBSRT and ASCS$$ call SRTF$S, another VSRTLI routine. SRTF$S sorts up
to 20 input files and accepts a variety of key types.

VSRTLI also contains a set of cooperating sort routines and cooperating
merge routines. These allow you to use your own input and output
procedures. Strategies for using these cooperating routines are
discussed in the sections called Cooperating Sort Subroutines and
Cooperating Merge Subroutines, below. A sample program that uses the
cooperating sort subroutines is included.

SRTLIB: is the R-mode sort library. It contains the R-mode versions
of SUBSRT and ASCS$$.

VMSORT: is the V-mode library containing routines that perform
different types of in-memory sorts (heap, bubble, partition exchange,
radix exchange, straight insertion, binary search, and diminishing
increment). VMSORT also has a binary-search and table-building
subroutine.

MSORTS: is the R-mode version of VMSORT.

Table 17-1 shows the subroutines by function. Table 17-2 shows which
subroutines are located in each sort library.

Caution

R-mode subroutines can be called from FTN and PMA in R mode
only. If you call an R-mode routine from a program in a
different mode, the results are unpredictable. Refer to the
FORTRAN and PMA chapters in Volume I for information on
declaring parameters in FTN and PMA, respectively.

F i r s t E d i t i o n 1 7 - 2

SORT LIBRARIES

Table 17-1
Sort Routines by Function

Sort one file on ASCII key(s). SUBSRT
Sort (multiple key types) or merge sorted files. ASCS$$
Merge sorted files. MRG1$S
Return next merged record to sort. MRG2$S
Close merged input files. MRG3$S

Sort one or several input files. SRTF$S
Prepare sort table and buffers. SETU$S
Get input records. RLSE$S
Sort tables prepared by SETU$S. CMBN$S
Get sorted records. RTRN$S
Close all sort units. CLNU$S

Heap sort. HEAP
Partition exchange sort. QUICK
Diminishing increment sort. SHELL
Radix exchange sort. RADXEX

Insertion sort. INSERT
Bubble sort. BUBBLE
Binary search or build binary table. BNSRCH

1 7 - 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

Table 17-2
Sort Subroutines by Library

SRTLIB VSRTLI MSORTS VMSORT

SUBSRT SUBSRT HEAP HEAP
ASCS$$ ASCS$$ QUICK QUICK

SRTF$S SHELL SHELL
SETU$S RADXEX RADXEX
RLSE$S INSERT INSERT
CMBN$S BUBBLE BUBBLE
RTRN$S BNSRCH BNSRCH
CLNU$S
MRG1$S
MRG2$S
MRG3$S

Record Types

The following record types are handled by the VSRTLI library routines.

Compressed Source: Record with compressed blanks, delimited by a new
line character ('212). Compressed source lines cannot contain data
which may be interpreted as a blank compression indicator ('221) or new
line character.

Uncompressed Source: Record with no blank compression, delimited by a
newline character ('212) . Uncompressed source lines cannot contain
data which may be interpreted as a new line character.

Variable Length: Record stored with length (in halfwords) in the first
halfword. This length does not include the first halfword which
contains the count. Files containing records of this type are also
called binary files (not the same as object files produced by a
compi ler) .

Note

To sort variable length records, you must supply character
varying strings for subroutine parameters.

Fixed Length: Record containing data but no length information. The
length must be defined as the maximum line size. (If a new line
character is appended to each record to make the file acceptable input
to EDITOR (ED), the character must be included in the length.)

First Edition 17-4

SORT LIBRARIES

Default Record Type: The default depends upon the key types specified.
(See Key Definitions, below.) The input type defaults to variable
length i f the key specifies a single-precision (16-bit) integer,
double-precision (32-bit) integer, or single- or double-precision real
number. Otherwise, the default is compressed source. If the output
type is not specified, it is assumed to be the same as the input type.
SRTLIB routines use only compressed-source and variable records.

Note

If multiple input files are used, they must all contain records
of the same type.

Record Length

The maximum record length allowed is 508 characters in R-mode and 327 60
characters in V-mode. "WARNING-LINE TRUNCATED" is printed whenever the
data (not including record delimiters) exceeds the maximum record
length and the excess data is ignored. Output record length defaults
to the input record length.

Collating Sequence

You may sort ASCII keys using the EBCDIC rather than the ASCII
collating sequence. This option is specified in the spcls (2) parameter
of SRTF$S and SETU$S.

Key Definitions

A sort key is a portion of the record that determines the position of
the record in the sorted output. Most routines allow you to sort on
multiple keys. For many routines you must specify the starting and
ending positions of the keys in the data record. Specify the
appropriate columns (for character data) or bytes (for binary data).
Each key must start and end on a byte boundary. An improperly defined
key (for example, a key whose ending byte is greater than the record
length) produces unpredictable results. With compressed source
records, the key is padded with spaces.

In R-mode you may specify 20 keys each with a maximum length of 312
characters.

In V-mode you may specify up to 64 key fields, with a total length less
than or equal to the maximum record length of 327 60 characters. For
fixed-length records, the routines verify that key fields are contained

1 7 - 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

within the record length. Other restrictions on key length are
mentioned below. Each key type is specified as a parameter. The
available key types are the following:

ASCII Keys: Character strings, stored one character per byte. ASCII
keys are limited only by the length of the record in V mode.

Signed Numeric ASCII Keys: Require one byte per digit and include the
following types:

Numeric ASCII, leading separate sign

Numeric ASCII, trailing separate sign

Numeric ASCII, leading embedded sign

Numeric ASCII, trailing embedded sign

A space is treated as a positive sign. Signed numeric ASCII keys may
be as long as 63 digits plus sign.

When the sign is separate, a positive number has a plus sign(+) and a
negative number has a minus sign(-). If the sign is embedded, a single
character is used to represent the digit and sign. Embedded sign
characters are:

D i g i t Posit ive Negative

0 o,-, +/{ } ; -

1 1 A

2 2 B

3 3 C

4 4 D

5 5 E

6 6 F

7 7 G

8 8 H

9 9 I

F i r s t E d i t i o n 1 7 - 6

SORT LIBRARIES

Unsigned Numeric ASCII Keys: Stored one digit per byte and are limited
only by the length of the record.

Integer and Real Keys: Include the following types:

K e y B y t e L e n g t h R a n g e

Single-precision integer 2 -327 67 to +327 67

D o u b l e - p r e c i s i o n i n t e g e r 4 - 2 * * 3 1 t o + 2 * * 3 1 - 1

S i n g l e - p r e c i s i o n r e a l 4 + (1 0 * * - 3 8 t o 1 0 * * 3 8)

D o u b l e - p r e c i s i o n r e a l 8 + (1 0 * * - 9 9 0 2 t o 1 0 * * 9 8 2 5)

U n s i g n e d i n t e g e r 2 0 t o 6 5 5 3 5

Packed Decimal Keys: Stored two digits per byte. The last byte
contains the final digit plus sign. A negative field has a hex D in
the sign nibble. All other four-bit combinations in the sign nibble
represent a positive sign. A packed field must have an odd number of
digits and may have up to 63 digits plus sign.

Arguments

Numeric parameters are INTEGER*2 (fixed bin(15)), unless otherwise
noted; refer to the sample declaration statements for specific
information. Character strings such as pathnames are received as
integer arrays by the subroutines.

Tag Sorts

Some sort subroutines offer two types of sorts: tag sorts and nontag
sorts. You can choose the type of sort by setting a parameter. This
choice has the following meaning. When a routine cannot perform a sort
completely in the memory allocated, it creates temporary work files in
which it stores sorted pieces of the data. These sorted pieces are
then merged to create the output file. A tag sort stores the input
records separately from the key data. After all the keys have been
sorted and merged, the corresponding records are located and returned.
This last phase may be time-consuming for a very large file. A nontag
sort stores each input record with its sort key. This method
eliminates the search for each record after the merge, but requires
more disk space. Furthermore, a nontag sort is not always faster than
a tag sort because merging records and keys requires more I/O than
merging keys only.

17-7 First Edition

SUBROUTINES, VOLUME IV

The following are some criteria (in suggested order of importance) for
selecting a tag sort versus a nontag sort:

• If disk space is a problem, use a tag sort.

• If the input file is small, use either type of sort.

• If the input file is large, use a nontag sort.

• If the input file is partially ordered, use a nontag sort.

• If the input file is not ordered, use a tag sort.

Using Open File Units

The SRTF$S, SETU$S, and MRG1$S subroutines allow you to use open file
units for input and output files. Using open file units can save you
time. If an input or output file is already open, you need not close
it only to have the sort routine open it again.

When you use an open file unit, specify 0 for the pathname length
parameter of the sort routine. Before you call the sort routine, be
sure that the file pointer is positioned at the beginning of the open
fi l e .

F i r s t E d i t i o n 1 7 - 8

SORT LIBRARIES

VSRTLI (V-MODE) SUBROUTINES

VSRTLI routines follow a consistent naming convention to avoid possible
conflict between user-written routines and system routines. All entry
points end with the suffix $S (except SUBSRT and ASCS$$, which remain
the same for compatibility with earlier versions of the library).
Subroutines that are used internally by the VSRTLI routines have a
suffix of $$S and should not be called from user routines.

For the VSRTLI routines, you may specify up to 64
record length is 32760 bytes.

keys. The maximum

17-9 First Edition

SUBROUTINES, VOLUME IV

SUBSRT

Purpose

SUBSRT sorts a single input file containing compressed source records.
The file is sorted on up to 64 ASCII keys in ascending order. Maximum
record length is 32760 bytes (characters).

Usage

DCL SUBSRT ENTRY(CHARACTER(80), FIXED BIN(15), CHARACTER(80),
FIXED BIN(15), FIXED BIN(15), 64 FIXED BIN(15),
64 FIXED BIN(15), FIXED BIN(15), FIXED BIN(31))

CALL SUBSRT (path_l, len_l, path_2, len_2, numkey, nstart, nend,
npass, nitem);

Parameters

path_l

INPUT. Input pathname, up to 80 characters.

l en_ l

INPUT. Length of input pathname in characters.

path—2

INPUT. Output pathname, up to 80 characters.

len_2

INPUT. Length of output pathname in characters.

numkey

INPUT. Number of keys (pairs of starting and ending columns, or
starting and ending bytes if binary). (Maximum is 64, default is
1.)

ns ta r t

INPUT. Array containing starting columns/bytes of keys. (Each
must be > 1).

F i r s t E d i t i o n 1 7 - 1 0

S U B S R T S O R T L I B R A R I E S

nend

INPUT. Array containing ending columns/bytes of keys. (Each must
be < the maximum record length.)

npass

OUTPUT. Number of passes made during the sort,

ni tem

OUTPUT. Number of items returned in the output file.

Loading and Linking Information

VSRTLI — V-mode

(For the R-mode version of SUBSRT, see SRTLIB (R-MODE) SUBROUTINES,
later in this chapter.)

1 7 - H F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

ASCS$$

Alternate Name

A nonstandard alternate name for this subroutine is ASCSRT. Avoid this
calling form.

Purpose

ASCS$$ sorts and merges compressed-source or variable-length records.
Maximum record length is 32760 bytes. A variety of key types may be
used, with ascending and descending keys within the same sort or merge.
(The R-mode version handles fewer key types.) When equal keys are
sorted, the input order is maintained.

Usage

DCL ASCS$$ ENTRY(CHARACTER(80), FIXED BIN(15), CHARACTER(80),
FIXED BIN(15), FIXED BIN(15), 64 FIXED BIN(15),
64 FIXED BIN(15), FIXED BIN(15), FIXED BIN(31),
64 FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
CHARACTER(80*MGCNT), MGCNT(FIXED BIN 15),
PTR, FIXED BIN(15), 64 FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15), MGCNTFIXED BIN(15));

CALL ASCS$$(path__l, len_ 1, path—2, len_2, numkey, nstart, nend,
npass, nitem, nrev, ispce, mgcnt, mgbuff, len,
ADDR(buffer), msize, ntype, linsiz, nunits, units);

Parameters

path—1

INPUT. Input pathname, up to 80 characters.

l en_ l

INPUT. Length of input pathname in characters.

path_2

INPUT. Output pathname, up to 80 characters.

len_2

INPUT. Length of output pathname in characters

F i r s t E d i t i o n 1 7 - 1 2

A S C S $ $ S O R T L I B R A R I E S

numkey

INPUT. Number of keys (pairs of starting and ending columns, or
starting and ending bytes if binary). (Maximum is 64, with a
default of 1.)

ns ta r t

INPUT. Array containing starting columns/bytes of keys. (Each
must > 1.)

nend

INPUT. Array containing ending columns/bytes of keys. (Each must
be < linsiz.)

npass

OUTPUT. Number of passes made during the sort,

nitem

OUTPUT. Number of items in output file,

nrev

INPUT. Array containing sort order for each key:

0 A s c e n d i n g

1 D e s c e n d i n g

Default is 0 (ascending).

ispce

INPUT. Option to specify treatment of blanks:

0 Inc lude blank l ines in sor t (defaul t) .

1 D e l e t e b l a n k l i n e s ,

mgcnt

INPUT. Number of merge files (up to 10) . (These files are merged
with the input file.)

mgbuff

INPUT. Array containing merge filenames, up to 80 characters each
(Pathnames may be used.)

1 7 - 1 3 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V A S C S $ $

len

INPUT. Array containing length of merge filenames in characters.

ADDR(buffer)

INPUT. Obsolete — specify as 0.

msize

INPUT. Size (<65536) of common block for sort in halfwords.
Should be record size times maximum number of records expected. If
nonzero, msize must be at least 1024 (one page) and no more than 64
pages. If larger, the message "WARNING-PRESORT BUFFER SHOULD NOT
BE LARGER THAN ONE SEGMENT" is issued, and the default is used.
Default is one segment (65536 halfwords).

ntype

INPUT. Optional. Array containing type of each key:

1 A S C I I

2 1 6 - b i t i n t e g e r

3 S i n g l e - p r e c i s i o n r e a l

4 D o u b l e - p r e c i s i o n r e a l

5 3 2 - b i t i n t e g e r

6 Numeric ASCII, leading separate sign

7 Numeric ASCII, trailing separate sign

8 P a c k e d d e c i m a l

9 Numeric ASCII, leading embedded sign

10 Numeric ASCII, trailing embedded sign

11 Numeric ASCII, unsigned

12 ASCII, lowercase sorts equal to uppercase

1 3 U n s i g n e d i n t e g e r

Default is all ASCII keys.

F i r s t E d i t i o n 1 7 - 1 4

A S C S $ $ S O R T L I B R A R I E S

l i n s i z

INPUT. Optional. Maximum size of record in characters (bytes).
Default is 327 60.

nun i ts

SCRATCH. Obsolete. May be omitted,

un i t s

SCRATCH. Obsolete. May be omitted.

Loading and Linking Information

VSRTLI — V-mode

(For R-mode version of ASCS$$, see SRTLIB (R-MODE) SUBROUTINES later in
this chapter.)

1 7 - 1 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

SRTF$S

Purpose

SRTF$S sorts a maximum of 20 input files into a single output file. It
is called by the previous two sorts.

Usage

DCL SRTF$S ENTRY(CHAR(80,INCNT), INCNT FIXED BIN(15),
INCNT FIXED BIN(15), FIXED BIN(15),
CHARACTER(80), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), 64 FIXED BIN(15),
64 FIXED BIN(15), 64 FIXED BIN(15),
64 FIXED BIN(15), FIXED BIN(15), 5 FIXED BIN(15),
5 FIXED BIN(15), 5 FIXED BIN(15), FIXED BIN(15));

CALL SRTF$S(inbuff, inlen, inunts, incnt, path2, len2, outunt,
numkey, nstart, nend, nrev, ntype, code, inrec,
outrec, spcls, msize);

Parameters

i n b u f f

INPUT. Array containing input filenames. Ignored if open units
are used.

i n len

INPUT. Array containing lengths of input pathnames in characters
(up to 80 characters each). Specify 0 for pathname lengths if open
units are used.

inunts

INPUT. Array containing input file units (if open units are used).

i ncn t

INPUT. Number of input files (up to 20).

path2

INPUT. Output file pathname, up to 80 characters. Ignored if an
open unit is used.

F i r s t E d i t i o n 1 7 - 1 6

S R T F $ S S O R T L I B R A R I E S

len2

INPUT. Length of output pathname in characters. Specify 0 if an
open unit is used.

outunt

INPUT. Output file unit (if an open unit is used).

numkey

INPUT. Number of keys (pairs of starting and ending columns, or
starting and ending bytes if binary). (Maximum is 64, with a
default of 1.)

ns ta r t

INPUT. Array containing starting columns/bytes of keys (Each must
be > 1.)

nend

INPUT. Array containing ending columns/bytes of keys (Each must be
< inrec(2).)

nrev

INPUT. Array containing sort order for each key:

0 A s c e n d i n g (d e f a u l t)

1 D e s c e n d i n g

ntype

INPUT. Array containing type of each key:

1 A S C I I

2 1 6 - b i t i n t e g e r

3 S i n g l e - p r e c i s i o n r e a l

4 D o u b l e - p r e c i s i o n r e a l

5 3 2 - b i t i n t e g e r

6 Numeric ASCII, leading separate sign

7 Numeric ASCII, trail ing separate sign

8 P a c k e d d e c i m a l

9 Numeric ASCII, leading embedded sign

1 7 - 1 7 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V S R T F $ S

10 Numeric ASCII, trailing embedded sign

11 Numeric ASCII, unsigned

12 ASCII, lowercase sorts equal to uppercase

1 3 U n s i g n e d i n t e g e r

Default is all ASCII keys.

code

OUTPUT. Return code (Refer to Appendix A for more information.)

in rec

INPUT. Array containing input record information:

inrec (1) Input record type:

1 Compressed source (blanks compressed)

2 V a r i a b l e l e n g t h

3 F i x e d l e n g t h (i n r e c (2) m u s t b e
specified)

4 U n c o m p r e s s e d s o u r c e (n o b l a n k
compression)

Default depends on the key types specified in
argument ntype.

inrec (2) Maximum input record size in characters (bytes).
D e f a u l t i s 3 2 7 6 0 . R e q u i r e d f o r s o r t i n g
fixed-length records.

inrec (3-5) Must be 0; reserved for future use.

outrec

INPUT. Array containing output record information:

outrec(1) Output record type. (See inrec.)

outrec (2) Maximum output record size in characters (bytes).

outrec (3-5) Must be 0; reserved for future use.

F i r s t E d i t i o n 1 7 - 1 1

S R T F $ S S O R T L I B R A R I E S

spcls

INPUT. Array containing special options:

spcls(1) Space option:

0 Inc lude b lank l ines in sor t (defaul t) .

1 D e l e t e b l a n k l i n e s ,

spcls(2) Col lat ing sequence:

0 De fau l t (P r ime ECS)

1 P r i m e E C S

2 E B C D I C

3 A S C I I - 8

4 I S O - 7

spcls (3) Tag/nontag option:

0 D e f a u l t (t a g s o r t)

1 T a g s o r t

2 N o n t a g s o r t

spcls (4-5) Must be 0; reserved for future use.

msize

INPUT. Size of presort buffer in pages (units of 1024 halfwords),
not greater than 64. (Note that the units used here are pages
which differ from the halfwords used by ASCS$$. Default is one
segment; 64 pages.)

Loading and Linking Information

VSRTLI — V-mode

1 7 - 1 9 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

COOPERATING SORT SUBROUTINES

This section describes the following five subroutines:

• SETU$S

• RLSE$S

• CMBN$S

• RTRN$S

• CLNU$S

These routines allow you to use your own input and output procedures.
If you use these routines, you must use all of them and call them in
the order listed above to ensure that the sort is done correctly.
These subroutines are available in V-mode only. All parameters are
INTEGER*2 in FTN; refer to the sample del statements for parameter
declarations in PL/I.

The cooperating sort routines are used as follows. SETU$S creates a
table in which the sort is to be done, setting record size, record
type, and other attributes. It also determines whether the records are
to be read directly from the input files into the sort area or whether
they are to be accepted from an input procedure. It determines
whether, after sorting, the records are to be sent directly to the
output file or are to be postprocessed by an output procedure.

After calling SETU$S and giving it the necessary information, your
program should call RLSE$S. If you specified to SETU$S that records
were to be read from a preprocessing input procedure, you must supply
the input procedure. The procedure should call RLSE$S once for each
record to be sorted, supplying the record in the rlbuff parameter. If
you specified to SETU$S that records were to be read directly from
input file(s), your program should call RLSE$S only once and should not
use the RLSE$S parameters. In this case, RLSE$S simply reads the
records from the input file(s) into the sort area.

Next, your program should call the sort procedure, CMBN$S, to do the
actual sort ing. Since SETU$S should already have stored all
information about record size, type, and collating sequence, CMBN$S
accepts no parameters.

After calling CMBN$S, your program must call RTRN$S to obtain the
sorted records. If you specified to SETU$S that records were to be
postprocessed by an output procedure, RTRN$S uses its rtbuff parameter
to return records for postprocessing. If you specified to SETU$S that
records were to be returned directly to an output file, RTRN$S writes
the records to the output file.

Finally, your program must call CLNU$S to close files opened by RLSE$S
and RTRN$S and to delete temporary sort files.

F i r s t E d i t i o n , U p d a t e 2 1 7 - 2 0

SORT LIBRARIES

These cooperating sort subroutines allow great flexibility in a sort
operation because the program that calls them can process the records
extensively before and after sorting. However, there is a tradeoff in
speed. Because input and output procedures involve a procedure call
for each record, and because preprocessing and postprocessing take
time, sorting with these routines is generally slower than sorting with
other routines.

An example of combined use of these subroutines is provided later in
this section.

1 7 ~ 2 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

SETU$S

Purpose

SETU$S checks the parameters that you supply and sets up the tables for
the requested sort.

Usage

DCL SETU$S ENTRY(CHARACTER(80,INCNT) , INCNT FIXED BIN(15),
INCNT FIXED BIN(15), FIXED BIN(15),
CHARACTER(80), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), 64 FIXED BIN(15), 64 FIXED BIN(15),
64 FIXED BIN(15), 64 FIXED BIN(15), FIXED BIN(15),
5 FIXED BIN(15), 5 FIXED BIN(15), 5 FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15), FIXED BIN(15));

CALL SETU$S(inbuff, inlen, inunts, incnt, path2, len2, outunt,
numkey, nstart, nend, nrev, ntype, code, inrec,
outrec, spcls, msize, iproc, oproc);

Parameters

i n b u f f

INPUT. Array containing input filenames (Ignored if open units are
used.)

i n len

INPUT. Array containing lengths of input pathnames in characters
(up to 80 characters each). (Specify 0 for pathname lengths if
open units are used.)

inunts

INPUT. Array containing input file units (if open units are used).

i ncn t

INPUT. Number of input files (up to 20).

path2

INPUT. Output file pathname, up to 80 characters. (Ignored if an
open unit is used.)

F i r s t E d i t i o n 1 7 - 2 2

S E T U $ S S O R T L I B R A R I E S

len2

INPUT. Length of output pathname in characters. (Specify 0 if an
open unit is used.)

outunt

INPUT. Output file unit (if an open unit is used).

numkey

INPUT. Number of keys (pairs of starting and ending columns, or
starting and ending bytes if binary). (Maximum is 64, default is
1.)

ns ta r t

INPUT. Array containing starting columns/bytes of keys. (Each
must be > 1.)

nend

INPUT. Array containing ending columns/bytes of keys. (Each must
be < _______(2) .)

nrev

INPUT. Array containing sort order for each key:

0 A s c e n d i n g (d e f a u l t)

1 D e s c e n d i n g

ntype

INPUT. Array containing type of each key:

1 A S C I I

2 S i n g l e - p r e c i s i o n i n t e g e r

3 S i n g l e - p r e c i s i o n r e a l

4 D o u b l e - p r e c i s i o n r e a l

5 D o u b l e - p r e c i s i o n i n t e g e r

6 Numeric ASCII, leading separate sign

7 Numeric ASCII, trail ing separate sign

8 P a c k e d d e c i m a l

9 Numeric ASCII, leading embedded sign

1 7 - 2 3 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V S E T U $ S

10 Numeric ASCII, trailing embedded sign

11 Numeric ASCII, unsigned

12 ASCII, lowercase sorts equal to uppercase

1 3 U n s i g n e d i n t e g e r

Default is all ASCII keys.

code

OUTPUT. Return code. (Refer to Appendix A for more information.)

inrec

INPUT. Array containing input record information:

inrec(1) Input record type:

1 Compressed source (blanks compressed)

2 V a r i a b l e l e n g t h

3 F i x e d l e n g t h (i n r e c (2) m u s t b e
specified)

4 U n c o m p r e s s e d s o u r c e (n o b l a n k
compression)

Default depends on the key types specified in
ntype.

inrec(2) Maximum input line size in characters (bytes).
D e f a u l t i s 3 2 7 6 0 . R e q u i r e d f o r s o r t i n g
fixed-length records.

inrec(3-5) Must be 0; reserved for future use.

outrec

INPUT. Array containing output record information:

outrec(1) Output record type. (See inrec.)

outrec(2) Maximum output line size in characters (bytes).

outrec(3-5) Must be 0; reserved for future use.

spcls

INPUT. Array containing:

F i r s t E d i t i o n 1 7 - 2 4

S E T U $ S S O R T L I B R A R I E S

spcls(1) Space option:

0 Inc lude blank l ines in sor t (defaul t) .

1 D e l e t e b l a n k l i n e s ,

spcls(2) Collat ing sequence:

0 D e f a u l t (A S C I I)

1 A S C I I

2 E B C D I C

spcls (3) Tag/nontag option:

0 D e f a u l t (t a g s o r t)

1 T a g s o r t

2 N o n t a g s o r t

spcls(4-5) Must be 0; reserved for future use.

msize

INPUT. Size of common presort buffer in pages (units of 1024
halfwords), no greater than 64. The size should be at least the
product of the size of one record and the maximum number of records
expected. Default is one segment (64 pages).

ip roc

INPUT. Input data source (used by RLSE$S):

0 I n p u t fi l e

1 I n p u t p r o c e d u r e

oproc

INPUT. Output data destination (used by RTRN$S):

0 O u t p u t fi l e

1 O u t p u t p r o c e d u r e

Loading and Linking Information

VSRTLI — V-mode

1 7 - 2 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

RLSE$S

Purpose

RLSE$S reads records into the sort area. Depending upon the value of
iproc in the preceding SETU$S call, RLSE$S reads records either from
input file(s) or from the buffer specified in the RLSE$S call.

Usage

DCL RLSE$S ENTRY(CHAR(*), FIXED BIN(15));

CALL RLSE$S(rlbuff, length);

Parameters

r l b u f f

INPUT. Buffer containing next record for sort.

l e n g t h

INPUT. Length of record in characters or bytes. This is not
necessarily the full length of rlbuff.

D i s c u s s i o n

If you use an input procedure, you should call RLSE$S once for each
record to be read.

If you use an input file instead of an input procedure, you should call
RLSE$S only once per input file. If input is from a file, multiple
calls to RLSE$S result in multiple occurrences of each record when
s o r t e d .

Source records passed from an input procedure (when inrec (1) = 1 in the
SETU$S call) must end with a new line character ('212) . Otherwise
RLSE$S issues the message, "WARNING-LINE TRUNCATED," and the last
character is overwritten by a NEWLINE character.

You may prefer to sort a text file as fixed-length records by reading
the records into the program with RDLIN$ rather than by sorting them as
source records.

Loading and Linking Information

VSRTLI — V-mode

F i r s t E d i t i o n 1 7 - 2 6

SORT LIBRARIES

CMBN$S

Purpose

CMBN$S performs the internal sort. It uses the records provided by
RLSE$S together with the tables, collating sequence, and other
information provided by SETU$S. If the sort cannot be done within
allocated memory, CMBN$S merges the strings previously sorted. (Refer
to Tag Sorts, earlier in this chapter, for details.)

r Usage

DCL CMBN$S entry;

CALL CMBN$S;

Loading and Linking Information

VSRTLI — V-mode

17-27 First Edition, Update 1

SUBROUTINES, VOLUME IV

RTRN$S

Purpose

RTRN$S returns the records sorted by CMBN$S. Records are returned
either to an output procedure or to an output file, depending on the
value of the oproc argument in the last call to SETU$S.

Usage

DCL RTRN$S ENTRY(CHAR(*), FIXED BIN(15));

CALL RTRN$S(rtbuff, length);

Parameters

r t b u f f

OUTPUT. Buffer containing next sorted record. This parameter
should be large enough to hold the longest record sorted.

length

OUTPUT. Length of record in characters or bytes. When all records
have been returned, a call to RTRN$S returns a record length of 0.

Discussion

If you use an output procedure, each call to RTRN$S calls the next
sorted record. The record is placed in rtbuff. If you want to save
the record, you must write it to an output file.

If you use an output file instead of an output procedure, you should
call RTRN$S only once. In this case, the RTRN$S parameters are not
used but they are writeable, so you should include dummy variables.
Refer to the list of integers and the CALL RTRN$S statement in the
sample included with the CLNU$S description.

Loading and Linking Information

VSRTLI — V-mode

F i r s t E d i t i o n , U p d a t e 1 1 7 - 2 8

SORT LIBRARIES

CLNU$S

Purpose

CLNU$S closes all units opened by the sort routines and deletes any
tempora ry fi les .

Usage

DCL CLNU$S entry;

CALL CLNU$S;

Loading and Linking Information

VSRTL I — V-mode

SAMPLE USER INPUT PROCEDURE

The following sample program demonstrates the use of an input procedure
with the sort subrout ines. This input procedure selects for sort ing
only those records in INPUTFILE that begin with AA.

OK SLIST SAMPLE-FTN
C SAMPLE PROGRAM WHICH CALLS SORT
C TO DEMONSTRATE THE USE OF AN
C INPUT PROCEDURE BEFORE SORTING
$INSERT SYSCOM>KEYS.INS.FTN
$INSERT SYSCOM>ERRD.INS.FTN
C

INTEGER
& BUFFER(IO) , / * Bu f f e r f o r r ead ing fi l e
& E R C O D E , / * E r r o r c o d e
& I N R E C (5) , / * I n p u t r e c o r d i n f o r m a t i o n
& O U T R E C (5) , / * O u t p u t r e c o r d i n f o r m a t i o n
& S P C L S (5) , / * F l a g s f o r s p e c i a l o p t i o n s
& T Y P E / * F i l e t y p e r e t u r n e d w h e n fi l e o p e n e d
& D U M M Y / * D u m m y v a r i a b l e f o r RT R N $ S

C
DATA

C I n p u t r e c o r d s a r e fi x e d l e n g t h (2 0 c h a r a c t e r s) :
& INREC / 3, 20, 0, 0, 0 /,

C Output records are uncompressed source (to a l low edi t ing):
& OUTREC / 4, 20, 0, 0, 0 /,

C N o s p e c i a l o p t i o n s :
& SPCLS / 0, 0, 0, 0, 0 /

1 7 - 2 9 F i r s t E d i t i o n , U p d a t e 1

SUBROUTINES, VOLUME IV CLNU$S

C
C
100
200
C
C
C

C
C
300

Open the input file
CALL SRCH$$ (K$READ, 'INPUTFILE', 9, 1, TYPE, ERCODE)
IF (ERCODE .NE. 0) CALL ERRPR$ (K$NRTN, ERCODE, 0,0,0,0)

Initialize sort tables
CALL SETU$S

& (0 ,
& 0 ,
& 0 ,
& 0 ,
& ' O U T P U T F I L E ' ,
& 1 0 ,
& 0 ,
& 1 ,
& 1 ,
& 2 0 ,
& 0 ,
& 1 ,
& E R C O D E ,
& I N R E C ,
& O U T R E C ,
& S P C L S ,
& 0 ,
& 1 ,
& 0)
IF (ERCODE .NE. 0) CALL

/* no input filenames
/* no lengths of filenames
/* no input file units
/* no input filenames
/* this is the output filename
/* its name is 10 chars long

no output file unit specified
sort file on one key
start sort at column one
end sort at column twenty
sort in ascending order
the key is all ASCII characters
an error code will be returned
input record information
output record information
use options requested (none&)

/* use default for presort buffer
/* input data is from procedure
/* output is to file
ERRPR$(K$NRTN, ERCODE,0,0,0,0)

/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *

With everything initialized, Read records from input file:
READ (5, 200, END=300) BUFFER
FORMAT (10A2)

Select the records to be sorted, and pass them so as to
sort with the record length (i.e, 20 characters):

IF (BUFFER(l) .EQ. 'AA') CALL RLSE$S(BUFFER,20)
G O T O 1 0 0 / * r e a d n e x t r e c o r d

At end of input file, come here to finish up the sort:
C A L L C M B N $ S / * d o t h e a c t u a l s o r t
CALL RTRN$S(DUMMY,DUMMY) /* send records to the output file
C A L L C L N U $ S / * c l e a n u p a f t e r s o r t i n g

Now close the input file:
CALL SRCH$$ (K$CLOS, 0, 0, 1, 0, ERCODE)
IF (ERCODE .NE. 0) CALL ERRPR$(K$NRTN,ERCODE,0,0,0,0)
CALL EXIT
END

First Edition, Update 1 17-30

C L N U $ S S O R T L I B R A R I E S

This program may be compiled, loaded, and run with the following
d ia log:

OK FTN SAMPLE -64V -DCLVAR

0000 ERRORS [<.MAIN.>FTN-REV19.3]
OK SEG -LOAD
[SEG Rev. 20.2.B2 Copyright (c) 198 6, Prime Computer, Inc.]
$ LO SAMPLE
$ LI VSRTLI
$ LI
LOAD COMPLETE
$ EXEC

Note

When compiling an F77 program, use the -INTS option for FTN
c o m p a t i b i l i t y.

The following listings show INPUTFILE and the sorted OUTPUTFILE.

OK SLIST INPUTFILE

AA EMPLOYEE1
BB EMPLOYEE5
BB EMPLOYEE3
CC EMPLOYEE4
AA EMPLOYEE2
AA EMPLOYEE6
CC EMPLOYEE7
AA EMPLOYEE0
EE EMPLOYEE8

OK SLIST OUTPUTFILE

AA EMPLOYEE0
AA EMPLOYEE1
AA EMPLOYEE2
AA EMPLOYEE6

1 7 - 3 1 F i r s t E d i t i o n , U p d a t e 1

SUBROUTINES, VOLUME IV

COOPERATING MERGE SUBROUTINES

This section describes the merge subroutines MRG1$S, MRG2$S, and
MRG3$S.

To merge two or more sorted files with no special processing, use
MRG1$S. If you want to postprocess the merged records, you may use the
three merge subroutines as follows:

• Call MRG1$S and supply it with specifications about the
operation to be performed and the files and records to be used.

• Call MRG2$S to get the merged records one at a time.

• Finally, call MRG3$S to close units and delete temporary files
opened by the other subroutines.

The cooperating merge routines are similar to the cooperating sort
subroutines described earlier. However, the merge routines differ from
the sort routines in their handling of output files. If you call
MRG1$S and supply an output file rather than an output procedure,
MRG1$S calls MRG2$S and MRG3$S itself. Do not call MRG2$S and MRG3$S
yourself if output is to a file.

F i r s t E d i t i o n , U p d a t e 1 1 7 - 3 2

SORT LIBRARIES

MRG1$S

Purpose

MRG1$S merges two to eleven previously sorted files into a single
output file.

Usage

DCL MRG1$S ENTRY(CHARACTER(80,INCNT), INCNT FIXED BIN(15),
INCNT FIXED BIN(15), FIXED BIN(15),
CHARACTER(80), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), 64 FIXED BIN(15), 64 FIXED BIN(15),
64 FIXED BIN(15), 64 FIXED BIN(15), FIXED BIN(15),
5 FIXED BIN(15), 5 FIXED BIN(15), 5 FIXED BIN(15),
FIXED BIN(15));

CALL MRG1$S(inbuff, inlen, inunts, incnt, tree2, len2, outunt,
numkey, nstart, nend, nrev, ntype, code, inrec,
outrec, spcls, oproc);

Parameters

i n b u f f

INPUT. Array containing input filenames. Ignored if open units
are used.

i n l e n

INPU. Array containing lengths of input pathnames in characters
(up to 80 characters each). Specify 0 for pathname lengths if open
units are used.

inunts

INPUT. Array containing input file units (if open units are used).

incnt

INPUT. Number of input files.

tree2

INPUT. Output file pathname, up to 80 characters. Ignored if an
open unit is used.

1 7 - 3 3 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V M R G 1 $ S

len2

INPUT. Length of output pathname in characters. Specify 0 if an
open unit is used.

outunt

INPUT. Output file unit (if an open unit is used).

numkey

INPUT. Number of keys (pairs of starting and ending columns, or
starting and ending bytes if binary). Maximum is 64, default is 1.

n s t a r t

INPUT. Array containing starting columns/bytes of keys. (Each
must be > 1.)

nend

INPUT. Array containing ending columns/bytes of keys. (Each must
be < inrec(2).)

nrev

INPUT. Array containing sort order for each key:

0 A s c e n d i n g (d e f a u l t)

1 D e s c e n d i n g

ntype

INPUT. Array containing type of each key:

1 A S C I I

2 1 6 - b i t i n t e g e r

3 S i n g l e - p r e c i s i o n r e a l

4 D o u b l e - p r e c i s i o n r e a l

5 3 2 - b i t i n t e g e r

6 Numeric ASCII, leading separate sign

7 Numeric ASCII, trailing separate sign

8 P a c k e d d e c i m a l

9 Numeric ASCII, leading embedded sign

F i r s t E d i t i o n 1 7 - 3 4

MRG1$S SORT LIBRARIES

10

11

12

13

code

OUTPUT

inrec

INPUT.

Numeric ASCII, trailing embedded sign

Numeric ASCII, unsigned

ASCII, lowercase sorts equal to uppercase.

Unsigned integer

Default is all ASCII keys.

Return code. (Refer to Appendix A for more information.)

Array containing input record information:

inrec(1) Input record type:

1 Compressed source (blanks compressed)

2 V a r i a b l e l e n g t h

F i x e d l e n g t h (i n r e c (2) m u s t b e
spec ified)

Uncompressed source
compression)

(no blank

inrec(2)

Default depends on the key type specified in ntype.

Maximum input record size in characters (bytes).
Required for sorting fixed-length records. Default
is 32760.

inrec(3-5) Must be 0; reserved for future use.

outrec

INPUT. Array containing output record information:

outrec(1) Output record type. (See inrec.)

outrec(2) Maximum output record size in characters (bytes)

outrec (3-5) Must be 0; reserved for future use.

17-35 First Edition

S U B R O U T I N E S , V O L U M E I V M R G 1 $ S

spcls

INPUT. Array containing:

spcls(1) Space option:

0 Include blank l ines in sort (defaul t) .

1 D e l e t e b l a n k l i n e s ,

spcls(2) Collat ing sequence:

0 D e f a u l t (A S C I I)

1 A S C I I

2 E B C D I C

spcls (3-5) Must be 0; reserved for future use.

oproc

INPUT. Output data destination (for use by MRG2$S):

0 O u t p u t fi l e

1 O u t p u t p r o c e d u r e

Loading and Linking Information

VSRTLI — V-mode

F i r s t E d i t i o n 1 7 - 3 6

SORT LIBRARIES

MRG2$SS

Purpose

This subroutine is used only after MRG1$S has been called to set up the
merge area, record and file specifications, and collating keys. MRG2$S
returns the next merged record. Do not call MRG2$S when output is to a
fi l e .

Usage

DCL MRG2$S ENTRY(CHAR(*), FIXED BIN(15));

CALL MRG2$S(rtbuff, length);

Parameters

r t b u f f

OUTPUT. Buffer containing next merged record. Should be large
enough to hold longest record merged.

length

OUTPUT. Length (in characters) of the record returned. Once all
records have been returned, MRG2$S returns a length of 0.

Loading and Linking Information

VSRTLI — V-mode

1 7 - 3 7 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

MRG3$S

Purpose

This subroutine is called only after MRG1$S and MRG2$S have been
called. MRG3$S closes all units opened by the other merge routines.
Do not call MRG3$S when output is to a file.

Usage

DCL MRG3$S ENTRY;

CALL MRG3$S;

Loading and Linking Information

VSRTLI — V-mode

F i r s t E d i t i o n 1 7 - 3 8

SORT LIBRARIES

SRTLIB (R-MODE) SUBROUTINES

SRTLIB, the R-mode version of VSRTLI, holds two subroutines: SUBSRT
and ASCS$$. See the discussion at the beginning of this chapter for
the differences in these subroutines when used in R-mode instead of
V-mode.

r
1 7 - 3 9 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

SUBSRT

Purpose

SUBSRT sorts a single input file containing compressed source records.
The file is sorted on up to 20 ASCII keys in ascending order. Maximum
record length is 508 bytes (characters). Maximum key length for all
keys is 312 characters.

Usage

INTEGER*2 path_l(40), len_l, path_2(40), len_2, numkey,
x n s t a r t (2 0) , n e n d (2 0) , n p a s s , n i t e m

CALL SUBSRT(path—1, len_1, path_2, len_2, numkey, nstart,
x n e n d , n p a s s , n i t e m)

Parameters

path_l

INPUT. Input pathname, up to 80 characters.

l en_ l

INPUT. Length of input pathname in characters,

path—2

INPUT. Output pathname, up to 80 characters.

len_2

INPUT. Length of output pathname in characters.

numkey

INPUT. Number of keys (pairs of starting and ending columns, or
starting and ending bytes if binary). Maximum is 20, default is 1.

ns ta r t

INPUT. Array containing starting columns/bytes of keys. (Each
must be > 1.)

F i r s t E d i t i o n 1 7 - 4 0

S U B S R T S O R T L I B R A R I E S

nend

INPUT. Array containing ending columns/bytes of keys. (Each must
be < the maximum record length.)

npass

OUTPUT. Number of passes made during the sort,

nitem

OUTPUT. Number of items returned in the output file.

Loading and Linking Information

SRTLIB — R-mode

(For the V-mode version of SRTLIB, see VSRTLI (V-MODE) SUBROUTINES,
earlier in this chapter.)

1 7 - 4 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

ASCS$$

Alternate Name

A nonstandard alternate name for this subroutine is ASCSRT
calling form.

Avoid this

Purpose

ASCS$$ sorts and merges compressed-source or variable-length records.
Maximum record length is 508 bytes. A variety of key types may be
used, with ascending and descending keys within the same sort or merge.
(The V-mode version handles more key types.) When equal keys are
sorted, the input order is maintained. Maximum total length for keys
is 312 characters.

Usage

INTEGER*2 path_l(l), len_l, path_2(ll), len_2, numkey,
x n s t a r t (1) , n e n d (l) , n p a s s , n r e v (l) , i s p c e ,
x mgcn t , mgbu f f (l) , l en (l) , ms i ze , n t ype (1) ,
x l i n s i z , n u n i t s , u n i t s
INTEGER*4 nitem

CALL ASCS$$(path—1, len_1, path_2, len_2, numkey, nstart,
x nend, npass, ni tem, nrev, ispce, mgcnt, mgbuff ,
x l e n , l o c (b u f f e r) , m s i z e , n t y p e , l i n s i z , n u n i t s ,
x u n i t s)

Parameters

path—1

INPUT. Input pathname, up to 80 characters.

l en_ l

INPUT. Length of input pathname in characters.

path_2

INPUT. Output pathname, up to 80 characters.

len_2

INPUT. Length of output pathname in characters

First Edition 17-42

A S C S $ $ S O R T L I B R A R I E S

numkey

INPUT. Number of keys (pairs of starting and ending columns, or
starting and ending bytes if binary). Maximum is 20, default is 1.

ns ta r t

INPUT. Array containing starting columns/bytes of keys. (Each
must be > 1.)

nend INPUT. Array containing ending columns/bytes of keys. (Each
must be < the maximum record length.)

npass

OUTPUT. Number of passes made during the sort,

nitem

OUTPUT. Number of items returned in output file,

nrev

INPUT. Array containing order for each key:

0 A s c e n d i n g

1 D e s c e n d i n g

ispce

INPUT. Whether to take blanks into account:

0 S o r t b l a n k l i n e s .

1 D e l e t e b l a n k l i n e s .

mgcnt

INPUT. Number of merge files (up to 10). These file are merged
with the input file.

mgbuff

INPUT. Array containing merge filenames, up to 8 0 characters each.
Pathnames may be used.

len

INPUT. Array containing lengths of merge filenames in characters.

1 7 - 4 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV ASCS$$

loc (bu f fe r)

INPUT. Location of presort buffer,

msize

INPUT. Size of presort buffer in halfwords. The presort buffer
size should be as large as possible on P100 and P200 systems. On
virtual memory systems, the best size must be determined by
experimentation.

ntype

INPUT. Optional. Array containing type of each key (default is
ASCII):

ASCII (default)

16—bit integer

Single—precision real

Double_precision real

32_bit integer

l i n s i z

INPUT. Optional. Maximum size of record in characters (bytes)
Default is 508.

nun i ts

INPUT. Optional,
by ASCS$$.)

un i t s

INPUT. Optional

Number of file units available. (Four are used

Array containing available file units.

Loading and Linking Information

SRTLIB — R-mode

(For the V-mode version of ASCS$$, see VSRTLI (V-MODE) SUBROUTINES,
earlier in this chapter.)

First Edition 17-44

SORT LIBRARIES

MSORTS AND VMSORT SUBROUTINES

The MSORTS and VMSORT libraries contain several in-memory sort
subroutines and a binary-search and table-building routine. MSORTS and
VMSORT contain the same subroutines, except that MSORTS is the R-mode
version and VMSORT is the V-mode version.

The reference for most of the algorithms and timing studies is Donald
Knuth, "Sorting and Searching," The Art of Computer Programming, vol.
3, Reading, MA: Addison-Wesley, 1973. The timing figures quoted are
based upon Knuth's algorithms on his fictional machine (MIX). Since
these routines are more general, the timing formulas quoted here should
be used only as an indication of the relative merits of each algorithm
and not as exact computational tools.

The following routines are included in MSORTS and VMSORT:

HEAP Heap sort - based upon binary trees

QUICK Quick sort - partition-exchange

SHELL Shell sort - diminishing increment

RADXEX Radix exchange sort

INSERT Straight insertion sort

BUBBLE Bubble sort - interchange

BNSRCH Binary search

The binary search routine (BNSRCH) can be used either for table
in an ordered table or for building a sorted table.

lookup

All routines accept multiword entries and multiword keys located
anywhere within the entry. All entries must be equal length and
keywords must be contiguous (no secondary keys).

The calling sequences for these routines are similar. However, each
sort has slightly different requirements. Except for RADXEX, all
routines have the same first five parameters.

Parameters Common to More Than One Subroutine

ptable

r
r

INPUT. Pointer to the first halfword of the table. (Not a PL/I
pointer.) For example, if the table is in an array table(a,b), the
parameter ptable = LOC (table). For routines in MSORTS, ptable is
a full 16-bit pointer and can be in the upper 32K of memory. For
VMSORT, ptable is a two-halfword pointer.

17-45 First Edition

SUBROUTINES, VOLUME IV

nentry

INPUT. Number of table entries (not halfwords) in the table
that is, items to be sorted or searched. This parameter is a full
16-bit count, since there can be more than 32K entries in the
t a b l e .

nhwds

INPUT. Number of halfwords per entry. nhwds must be more than 0.
If nhwds is greater than 32K, there can be only a single entry.

fhword

INPUT. First halfword within the entry of the key field.

nkhwds

INPUT. Number of halfwords in the key field. nkhwds must be
greater than 0 and less than or equal to nhwds. fhword +
nkhwds - 1 must be no more than nhwds. (In other words, the key
field must be contained within an entry.)

npass

OUTPUT. Number of passes made during the sort (0 if error).

a l tbp

INPUT. Alternate return for bad parameters (used only with FORTRAN
— use 0 for other languages).

RADXEX replaces the nkhwds parameter with the following:

f b i t

INPUT. First bit within fhword of the key. fbit must be greater
than 0 and fhword + (nbit + fbit - 2)/16 must be no more than
nhwds. (In other words, the key field must be contained within an
e n t r y.)

n b i t

INPUT. Number of bits in the key. The key field must be contained
within an entry.

The routines HEAP, QUICK, RADXEX, and BUBBLE also require temporary
arrays of the following sizes (in halfwords):

F i r s t E d i t i o n 1 7 - 4 6

SORT LIBRARIES

B U B B L E t a r r a y (n k h w d s)

HEAP,QUICK tarray(nhwds)

R A D X E X t a r r a y (2 * n b i t)

These arrays are work arrays used internally by the subroutines. Their
space is provided by the user, but the subroutine initializes them.

All routines except RADXEX sort the table in increasing order where the
key is treated as a single, signed, multiword integer. For example,
the numbers 5, -1, 10, -3 would be sorted to -3, -1, 5, 10. Since for
RADXEX the key need not begin on a word boundary, RADXEX treats the key
as a single, unsigned, multiword (or partial-word) integer. Thus,
RADXEX would sort the same four numbers to 5, 10, -3, -1.

Loading and Linking Information

SRTLIB — R-mode

(For the V-mode version of ASCS$$, see VSRTLI (V-MODE) SUBROUTINES,
earlier in this chapter.)

1 7 ~ 4 7 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

BNSRCH

Purpose

BNSRCH sets up a binary table and performs a binary search.

Usage

DCL BNSRCH ENTRY(ADDR(TABLE), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15), CHARACTER(NKHWDS),
CHARACTER(NHWDS), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15));

CALL BNSRCH(ptable, nentry, nhwds, fhword, nkhwds, skey, fentry,
index, opflag, altnf, altbp);

Parameters

Most of the BNSRCH parameters are described in the section, Parameters
Common to More Than One Subroutine. The additional parameters are
described below.

skey

INPUT. Search key array,

f en t r y

OUTPUT. Found entry array,

index

OUTPUT. Entry number of found entry,

opflag

INPUT. Operation key:

0 L o c a t e .

1 L o c a t e a n d d e l e t e .

2 L o c a t e o r i n s e r t .

3 Loca te and upda te .

First Edition 17-48

B N S R C H S O R T L I B R A R I E S

a l t n f

INPUT. Alternate return.

Discussion

Simple binary searching (opflag=0) tests each entry's key field for a
match with skey. If the entry is found, it is returned in fentry and
the entry number is put into index. If the entry is not found, the
alternate return (altnf) is taken. If altnf is not specified, the
normal return is taken, and the entry is deleted from the table as well
as returned in fentry. In this case, index specifies where the entry
was.

Opflag=2 is the same as opflag=0 if the entry is found. However, if
the entry is not found, index is set to 0 before the return. altnf is
not taken.

0pflag=3 is the same as opflag=0 if the entry is not found. If the
entry is found, the contents of fentry and the found entry are
interchanged, thus updating the table and returning the old entry.

Loading and Linking Information

MSORTS — R-mode
VMSORT — V-mode

1 7 - 4 9 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

BUBBLE

Purpose

This routine performs a bubble (simple interchange) sort.

Usage

DCL BUBBLE ENTRY(ADDR(TABLE), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15), CHARACTER(2*NKHWDS),
FIXED BIN(15), FIXED BIN(15), FIXED BIN(15));

CALL BUBBLE(ptable, nentry, nhwds, fhword, nkhwds, tarray, npass,
altbp, incr);

Parameters

Most of the BUBBLE parameters are described in the section, Parameters
Common to More Than One Subroutine. The additional parameters are
described below.

t a r r a y

SCRATCH. Temporary array.

i n c r

INPUT. Used to sort nonadjacent entries. (Refer to the discussion
of incr in the description of INSERT, below.) Default is 1 (sort
adjacent entries).

Discussion

Running Time: If N is the number of entries, the average running time
for this routine is proportional to N**2. Bubble sorting is good only
for very small N, but is not as good as insertion sorting.

Loading and Linking Information

MSORTS — R-mode
VMSORT — V-mode

F i r s t E d i t i o n 1 7 - 5 0

SORT LIBRARIES

HEAP

Purpose

A heap sort is based on a nonthreaded binary tree structure. The
algorithm consists of two parts: convert the table into a "heap," and
then sort the heap by an efficient top-down search of the tree. The
formal definition of a heap is as follows:

The keys K(l), K(2), K(3),..., K(N) constitute a "heap" if
K(J/2)>K(J) for 1<(J/2)<J<N.

Usage

DCL HEAP ENTRY(ADDR(TABLE), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15), CHARACTER(2*NHWDS),
FIXED BIN(15), FIXED BIN(15));

CALL HEAP(ptable, nentry, nhwds, fhword, nkhwds, tarray, npass, altbp);

Parameters

Most of the HEAP parameters are described in the section, Parameters
Common to More Than One Subroutine. The additional parameter is the
fo l low ing :

t a r r a y

SCRATCH. Temporary array.

Discussion

Running Time: If N is the number of entries, the average running time
is proportional to 23*N*ln(N) and the maximum is 26*N*ln(N). A heap
sort tends to be inefficient if N<2000, but for N>2000 it outperforms
all other sorts except QUICK.

Loading and Linking Information

MSORTS — R-mode
VMSORT — V-mode

1 7 - 5 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

INSERT

Purpose

Straight insertion sorting involves "percolating" each element into its
final posi t ion.

Usage

DCL INSERT(ADDR(TABLE), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15));

CALL INSERT(ptable, nentry, nhwds, fhword, nkhwds, npass, altbp,
i n c r) ;

Parameters

Most of the INSERT parameters are described in the section, Parameters
Common to More Than One Subroutine. The additional parameter is the
fo l low ing :

i n c r

INPUT. Used to sort nonadjacent entries. (Refer to the Discussion
below.)

Discussion

The incr parameter is used to sort nonadjacent entries. For example,
if incr = 3, then every third entry is included in the sort. The
following is an example of a sort with incr = 3.

i n p u t : 1 0 9 8 7 6 5 4 3 2 1 0

o u t p u t : 1 9 8 4 6 5 7 3 2 1 0 0

The default is incr = 1.

F i r s t E d i t i o n 1 7 - 5 2

I N S E R T S O R T L I B R A R I E S

Running Time: Let N be the number of entries. Although the average
running time is proportional to N**2, insertion sorting is very good
for small tables (N<13) and tends to be very efficient for nearly
ordered tables, even for large N.

Loading and Linking Information

MSORTS — R-mode
VMSORT — V-mode

1 7 - 5 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

QUICK

Purpose

QUICK performs a partition exchange sort. It is a variation of the
basic quicksort called a median-of-three quicksort.

Usage

DCL QUICK ENTRY(ADDR(TABLE), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15), CHARACTER(2*NHWDS),
FIXED BIN(15), FIXED BIN(15));

CALL QUICK(ptable, nentry, nhwds, fhword, nkhwds, tarray, npass,
a l t b p) ;

Parameters

Most of the QUICK parameters are described in the section, Parameters
Common to More Than One Subroutine. The additional parameter is the
fo l low ing :

t a r r a y

SCRATCH. Temporary array.

Discussion

Running Time: If N is the number of entries, the average running time
is proportional to 12*N*ln(N), but the maximum time is on the order of
N**2. On the average, QUICK is the fastest sort in MSORTS. However,
in the worst case QUICK may be the slowest sort in MSORTS. The worst
case is a completely ordered table. QUICK should not be used on tables
that are already well-ordered.

Loading and Linking Information

MSORTS — R-mode
VMSORT — V-mode

F i r s t E d i t i o n 1 7 - 5 4

SORT LIBRARIES

RADXEX

Purpose

RADXEX is a radix-exchange sort that treats the key as a series of
binary bits. It is based on both the method of radix sorting (as in
the case of a card sorter) and that of partitioning. RADXEX does not
sort signed numbers. It sorts the numbers 5, -1, 10, -3 to 5, 10, -3,
-1. RADXEX has the advantage that the key does not have to start on a
halfword boundary. In addition, the key need not be an integral number
of halfwords long.

Usage

DCL RADXEX ENTRY(ADDR(TABLE), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
CHARACTER(4*NBIT), FIXED BIN(15),
FIXED BIN(15));

CALL RADXEX(ptable, nentry, nhwds, fhword, fbit, nbit, tarray,
npass, a l tbp) ;

Parameters

Most of the RADXEX parameters are described in the section, Parameters
Common to More Than One Subroutine. The additional parameter is the
f o l l o w i n g :

t a r r a y

SCRATCH. Temporary array used as partition stack.

D iscuss ion

Running Time: If N is the number of entries, the average running time
is proportional to 14*N*ln(N). Radix exchange is very fast (on the
order of a QUICK sort) for large N, but is inefficient if equal keys
are present.

Loading and Linking Information

MSORTS — R-mode
VMSORT — V-mode

1 7 - 5 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

SHELL

Purpose

A SHELL sort (named after Donald Shell) is a diminishing increment
sort. SHELL utilizes the straight insertion sort (INSERT) on each of
its passes to order the nonadjacent elements that are one INC apart.
INC is then decreased on each pass. Increments are chosen by the
formula:

INC=(3**k- l) /2

where the initial increment is chosen so that INC(k + 2)>N, and
subsequent increments are chosen by decrementing k within the function.

Usage

DCL SHELL ENTRY(ADDR(TABLE), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15));

CALL SHELL(ptable, nentry, nhwds, fhword, nkhwds, npass, altbp);

Parameters

The SHELL parameters are described in the section, Parameters Common to
More Than One Subroutine.

Discussion

Running Time: If N is the number of entries, the average running time
is proportional to N**1.25 and the maximum time is N**1.5. A complete
timing analysis on the SHELL sort is not possible, but SHELL is very
good for N<2000. For N>2000, the HEAP sort is better.

Loading and Linking Information

MSORTS — R-mode
VMSORT — V-mode

F i r s t E d i t i o n 1 7 - 5 6

18
Fortran Matrix Library

(MATHLB)

MATHLB contains a set of subroutines that perform matrix operations,
solve systems of simultaneous l inear equations, and generate
permutations and combinations of elements. Table 18-1 lists the MATHLB
subroutines.

Caution

The MATHLB subroutines, and all other R-mode subroutines, can
be called from FTN and PMA in R-mode only. If you call an
R-mode routine from a program in a different mode, the results
are unpredictable. Refer to the FORTRAN and PMA chapters in
Volume I for information on declaring parameters in FTN and
PMA, respectively.

In this chapter, each subroutine description includes the FTN
statement(s) to declare the subroutine's parameters. If you
want to call a MATHLB subroutine from PMA, refer to the PMA
chapter in Volume I for information on declaring parameters in
PMA.

1 8 - 1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

Table 18-1
Summary of Available Matrix Operations

O p e r a t i o n]
Single-

Precision
Double-

Prec is ion In teger Complex

Setting matrix to identity matrix *MIDN DMIDN IMIDN CM IDN

Setting matrix to constant matrix MCON DMCON IMCON CMCON

Multiplying matrix by a scalar MSCL DMSCL IMSCL CMSCL

Matrix addit ion MADD DMADD IMADD CMADD

Matrix subtraction MSUB DMSUB IMSUB CMSUB

Matr ix mul t ip l i ca t ion MMLT DMMLT IMMLT CMMLT

Calculating transpose matrix *MTRN DMTRN IMTRN CMTRN

Calculating adjoint matrix MADJ DMADJ IMADJ CMADJ

Calculating inverted matrix *MINV DMINV CMINV

Calculating signed cofactor *MCOF DMCOF IMCOF CMCOF

Calculating determinant *MDET DMDET IMDET CMDET

Solving a system of linear
equations

LINEQ DLINEQ CLINEQ

Generating permutations PERM

Generating combinations COMB

* For square matrices only

First Edition 18-2

FORTRAN MATRIX LIBRARY (MATHLB)

SUBROUTINE CONVENTIONS

The following conventions are used in the subroutine descriptions in
th is chapter.

Names

Most of the MATHLB subroutines have single-precision, double-precision,
integer, and complex forms. A subroutine with more than one form
appears in th is chapter under i ts s ing le-prec is ion name. A l ternate
forms of the rout ine are shown in sample declarat ion and CALL
statements. I f a rout ine's s ingle-precis ion name is XXXX, then i ts
double-precision, integer, and complex names are DXXXX, IXXXX, and
CXXXX, respectively.

Arguments and Data Modes

In most cases, matrices, arrays, and constants must be of the same data
mode (REAL, DOUBLE PRECISION, INTEGER*2, or COMPLEX) as the subroutine.
One exception is that work arrays are sometimes integer arrays even if
t h e r o u t i n e i s r e a l , d o u b l e p r e c i s i o n , o r c o m p l e x . T h e s a m p l e
dec lara t ion s ta tements ind ica te the da ta types o f a l l parameters .
Generally, you choose which form of the subroutine to use based on the
data mode of the parameters you want to use. Matrix dimensions and
error flags must be declared as INTEGER*2. Unless otherwise noted, all
parameters are required.

M a t r i c e s

For the purposes of the MATHLB subroutines, a matrix is defined to be
an array with two subscripts. An n x m matrix is an array with n rows
and m columns; the first subscript has dimension n and the second
subscr ip t has d imension m. The d imensions passed as subrout ine
arguments must agree with the array sizes declared in the call ing
program; otherwise the elements will not be accessed properly.

Note

Except where otherwise noted, you may use the same matrix for
mo re t han one pa rame te r o f a sub rou t i ne (p rov i ded t he
dimensions are correct). For example, in matrix addition you
may specify: A = A + B. In this case, the value of A will
change; the new value of A will be the original value of A
added to B.

18-3 F i r s t Ed i t i on

SUBROUTINES, VOLUME IV

Work Arrays and Matrices

Parameters described as work arrays or work matrices must always be
distinct from one another in the calling program. Space for work
arrays and matrices is provided by the user, but values for these
parameters are supplied by the subroutine. In the parameter
descriptions, these parameters are labeled "SCRATCH."

F i r s t E d i t i o n 1 8 - 4

FORTRAN MATRIX LIBRARY(MATHLB)

r
r

COMB

Purpose

COMB computes the next combination of nr out of n elements with a
single interchange of elements at each call. The first call to COMB
returns the combinat ion 1, 2, 3, . . . , nr. This subrout ine is
sel f- in i t ia l iz ing and proceeds through al l n! /(nr! * (n - nr) !)
combinations. At the last combination it returns a value of last = 1
and resets itself. You may reinitialize the COMB subroutine by passing
a restrt value of 1 along with new values for n and nr. The restrt
parameter is optional and can be omitted. If you do not want to
reinitialize the routine, either omit restrt from the calling sequence
or set it to a value of 0.

Usage

INTEGER icomb(nr), n, nr, iwl(n), iw2(n),
c i w 3 (n) , l a s t , r e s t r t

CALL COMB (icomb, n, nr, iwl, iw2, iw3, last, restrt)

Parameters

icomb

OUTPUT. Array with one subscript of dimension nr. Contains the
combination returned by the subroutine.

INPUT. The number of elements from which combinations are taken,

nr

INPUT. The number of elements in each combination,

i w l

SCRATCH. Work array with one subscript of dimension n.

iw2

SCRATCH. Work array with one subscript of dimension n.

1 8 - 5 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

iw3

SCRATCH. Work array with one subscript of dimension n.

l a s t

OUTPUT. When returned with value of 1, indicates that the
currently returned combination is the last.

r e s t r t

INPUT. Optional. When restrt = 1, the subroutine is reinitialized
with new values for n and nr. When restrt = 0 or is omitted, the
subroutine is not reinitialized.

Note

The calling program should not attempt to modify icomb,
iwl, iw2, or iw3. For further details, see Gideon
E h r l i c h , " L o o p l e s s A l g o r i t h m s f o r G e n e r a t i n g
Permutations, Combinations, and Other Combinatorial
Configurations," Journal of the ACM, vol. 20, no. 3,
July 1973, pp. 500-513.

Loading and Linking Information

V-mode with shared libraries: Load VMXLIB.

V-mode with unshared libraries: Load NVMXLIB.

R-mode: Load MATHLB.

F i r s t E d i t i o n , U p d a t e 2 1 8 - 6

FORTRAN MATRIX LIBRARY(MATHLB)

LINEQ

Purpose

LINEQ solves the system of n linear equations in n unknowns represented
by (cmat) (xvect) = (yvect) where cmat is the square matr ix of
coefficients, xvect is the vector of unknowns upon which cmat operates,
and yvec t i s the resu l t i ng vec to r. L INEQ so lves the sys tem o f
equations for xvect.

Note

For double-precision or complex numbers, use DLINEQ or CLINEQ,
r e s p e c t i v e l y.

Usage

LINEQ:

R E A L * 4 x v e c t (n) , y v e c t (n) , c m a t (n , n) , w o r k (n p l , n p l)
INTEGER*2 n, npl, ierr
CALL LINEQ (xvect, yvect, cmat, work, n, npl, ierr)

DLINEQ:

CLINEQ

R E A L * 8 x v e c t (n) , y v e c t (n) , c m a t (n , n) , w o r k (n p l , n p l)
INTEGER*2 n, npl, ierr
CALL DLINEQ (xvect, yvect, cmat, work, n, npl, ierr)

COMPLEX xvec t (n) , yvec t (n) , cmat (n ,n) , work (np l ,np l)
INTEGER*2 n, npl, ierr
CALL CLINEQ (xvect, yvect, cmat, work, n, npl, ierr)

Parameters

x v e c t

OUTPUT. Array with one subscript of dimension n. The n x 1 column
vector on which cmat operates to result in yvect.

y v e c t

INPUT. Array with one subscript of dimension n. The n x 1 column
vector that results when cmat operates on xvect.

1 8 - 7 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

cmat

INPUT. The n x n matrix of coefficients,

work

SCRATCH. An npl x npl work matrix.

INPUT. In teger ind icat ing the d imension of the set o f l inear
e q u a t i o n s .

n p l

INPUT. Integer indicating the dimension of work. Must be equal to
n + 1.

i e r r

OUTPUT. Integer error flag. Returns one of three possible values:

i e r r M e a n i n g

0 S o l u t i o n f o u n d s a t i s f a c t o r i l y
1 C o e f fi c i e n t m a t r i x s i n g u l a r
2 npl < > n + 1

If ierr < > 0, no modifications are made to xvect.

Loading and Linking Information

V-mode with shared libraries: Load VMXLIB.

V-mode with unshared libraries: Load NVMXLIB.

R-mode: Load MATHLB.

F i r s t E d i t i o n , U p d a t e 2 1 8 - 8

f~ MADD

FORTRAN MATRIX LIBRARY(MATHLB)

r

r

r
r

Purpose

MADD adds the n x m matrix mat2 to the n x m matrix matl and returns
t h e s u m i n t h e n x m m a t r i x m a t s . I n c o m p o n e n t f o r m :
mats (i,j) = matl (i,j) + mat2 (i,j) as i goes from 1 to n and j goes
from 1 to m.

Note

For double-precision, integer, or complex numbers, use DMADD,
IMADD, or CMADD, respectively.

Usage

MADD:

DMADD

IMADD

CMADD:

R E A L * 4 m a t s (n , m) , m a t l (n , m)
INTEGER*2 n, m
CALL MADD (mats, matl, mat2, n, m)

R E A L * 8 m a t s (n , m) , m a t l (n , m)
INTEGER*2 n, m
CALL DMADD (mats, matl, mat2, n, m)

INTEGER*2 mats(n,m), matl(n,m), n, m
CALL IMADD (mats, matl, mat2, n, m)

COMPLEX mats(n,m), matl(n,m)
INTEGER*2 n, m
CALL CMADD (mats, matl, mat2, n, m)

Parameters

mats

OUTPUT. Sum of matl and mat2. An n x m matrix,

ma t l

INPUT. An n x m matrix.

1 8 - 9 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

mat2

INPUT. An n x m matrix.

n

INPUT. Integer indicating the number of rows in each matrix,

m

INPUT. Integer indicating the number of columns in each matrix,

Loading and Linking Information

V-mode with shared libraries: Load VMXLIB.

V-mode with unshared libraries: Load NVMXLIB.

R-mode: Load MATHLB.

F i r s t E d i t i o n , U p d a t e 2 1 8 - 1 0

FORTRAN MATRIX LIBRARY(MATHLB)

MADJ

Purpose

This subroutine calculates the adjoint of the n x n matrix mati and
stores it in the n x n matrix mato. Each element of the output matrix
is the signed cofactor of the corresponding element of the input
m a t r i x .

Note

For double-precision, integer, or complex numbers,
IMADJ, or CMADJ, respectively.

use DMADJ,

Usage

MADJ:

DMADJ

IMADJ:

CMADJ:

R E A L * 4 m a t o (n , n) , m a t i (n , n)
INTEGER*2 n, iwl(n), iw2(n), iw3(n), iw4(n), ierr
CALL MADJ (mato, mati, n, iwl, iw2, iw3, iw4, ierr)

R E A L * 8 m a t o (n , n) , m a t i (n , n)
INTEGER*2 n, iwl(n), iw2(n), iw3(n), iw4(n), ierr
CALL MADJ (mato, mati, n, iwl, iw2, iw3, iw4, ierr)

INTEGER*2 mato(n,n), mati(n,n), n, iwl(n) ,
x i w 2 (n) , i w 3 (n) , i w 4 (n) , i e r r
CALL MADJ (mato, mati, n, iwl, iw2, iw3, iw4, ierr)

COMPLEX mato(n,n) , mat i (n,n)
INTEGER*2 n, iwl(n), iw2(n) , iw3(n), iw4(n), ierr
CALL MADJ (mato, mati, n, iwl, iw2, iw3, iw4, ierr)

Parameters

mato

OUTPUT. Adjoint of mati. An n x n matrix,

18-11 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

mati

INPUT. An n x n matrix,

n

INPUT. Integer indicating the dimension of mati.

i w l

SCRATCH. Work array with one subscript of dimension n.

iw2

SCRATCH. Work array with one subscript of dimension n.

iw3

SCRATCH. Work array with one subscript of dimension n.

iw4

SCRATCH. Work array with one subscript of dimension n.

i e r r

OUTPUT. Integer error flag. Returns one of two possible values

i e r r M e a n i n g

0 Adjo in t successfu l ly const ructed
1 n < 2; no adjoint may be constructed

Note

You must supply different names for mato and mati.

Loading and Linking Information

V-mode with shared libraries: Load VMXLIB.

V-mode with unshared libraries: Load NVMXLIB.

R-mode: Load MATHLB.

F i r s t E d i t i o n , U p d a t e 2 1 8 - 1 2

FORTRAN MATRIX LIBRARY(MATHLB)

MCOF

Purpose

This subroutine calculates the signed cofactor of the element mat (i,j_)
of the n x n matrix mat and stores this value in eof. If i = 0 and
__ = 0 the determinant of mat is calculated.

Note

For double-precision, integer, or complex numbers, use DMCOF,
IMCOF, or CMCOF, respectively.

Usage

MCOF:

DMCOF

IMCOF

r
CMCOF

r
r

REAL*4 eof, mat(n,n)
INTEGER*2 n, iwl(n), iw2(n), iw3(n),

x i w 4 (n) , i , j , i e r r
CALL MCOF (eof, mat, n, iwl, iw2, iw3, iw4, i, j, ierr)

REAL*8 eof, mat(n,n)
INTEGER*2 n, iwl(n), iw2(n), iw3(n), iw4(n), i, j, ierr
CALL DMCOF (eof, mat, n, iwl, iw2, iw3, iw4, i, j, ierr)

INTEGER*2 eof, mat(n,n), n, iwl(n), iw2(n), iw3(n),
x i w 4 (n) , i , j , i e r r
CALL IMCOF (eof, mat, n, iwl, iw2, iw3, iw4, i, j, ierr)

COMPLEX cof, mat(n,n)
INTEGER*2 n, iwl(n), iw2(n), iw3(n), iw4(n), i, j, ierr
CALL CMCOF (cof, mat, n, iwl, iw2, iw3, iw4, i, j, ierr)

1 8 - 1 3 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

Parameters

c o f

OUTPUT. Signed cofactor of mat (i,j) • Integer,

mat

INPUT. An n x n matrix.

n

INPUT. Integer indicating the dimension of mat.

i w l

SCRATCH. Work array with one subscript of dimension n.

iw2

SCRATCH. Work array with one subscript of dimension n.

iw3

SCRATCH. Work array with one subscript of dimension n.

iw4

SCRATCH. Work array with one subscript of dimension n.

INPUT. Integer indicating the row position of the element of mat
whose signed cofactor is to be calculated.

INPUT. Integer indicating the column position of the element of
mat whose signed cofactor is to be calculated.

F i r s t E d i t i o n , U p d a t e 2 1 8 - 1 4

MCOF FORTRAN MATRIX LIBRARY(MATHLB)

i e r r

OUTPUT

i e r r

Integer error flag. Returns one of two possible values

Meaning

Cofactor calculated successfully
No cofactor calculated, for one or more
of the following reasons:

1. n < 2; no cofactor possible
2. __=j=n=0; no determinant
3. i=0 and __<>0 or

_j=0 and i<>0; subscript error
4 . i.>n and/or __>n;

subscript error

Loading and Linking Information

V-mode with shared libraries: Load VMXLIB.

V-mode with unshared libraries: Load NVMXLIB.

R-mode: Load MATHLB.

18-15 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

MCON

Purpose

This subroutine sets every element of the n x m matrix mat equal to the
constant con.

Note

For double-precision, integer, or complex numbers, use DMCON,
IMCON, or CMCON, respectively.

Usage

MCON:

DMCON:

IMCON:

CMCON:

REAL*4 mat(n,m), con
INTEGER*2 n, m
CALL MCON (mat, n, m, con)

REAL*8 mat(n,m), con
INTEGER*2 n, m
CALL DMCON (mat, n, m, con)

INTEGER*2 mat(n, m), n, m, con)
CALL IMCON (mat, n, m, con)

COMPLEX mat(n,m), con
INTEGER*2 n, m
CALL CMCON (mat, n, m, con)

F i r s t E d i t i o n , U p d a t e 2 1 8 - 1 6

M C O N F O R T R A N M A T R I X L I B R A R Y (M A T H L B)

Parameters

mat

OUTPUT. An n x m matrix,

n

INPUT. Integer indicating the number of rows in mat.

m

INPUT. Integer indicating the number of columns in mat,

con

INPUT. Constant to which all elements of mat are to be set equal.

Loading and Linking Information

V-mode with shared libraries: Load VMXLIB.

V-mode with unshared libraries: Load NVMXLIB.

R-mode: Load MATHLB.

1 8 - 1 7 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

MDET

Purpose

This subroutine calculates the determinant of the n x n matrix mat and
stores it in det.

Note

For double-precision, integer, or complex numbers, use DMDET,
IMDET, or CMDET, respectively.

Usage

MDET:

DMDET:

REAL*4 det, mat(n,n)
INTEGER*2 n, iwl(n), iw2(n), iw3(n), iw4(n), ierr
CALL MDET (det, mat, n, iwl, iw2, iw3, iw4, ierr)

REAL*8 det, mat(n,n)
INTEGER*2 n, iwl(n), iw2(n), iw3(n), iw4(n), ierr
CALL DMDET (det, mat, n, iwl, iw2, iw3, iw4, ierr)

IMDET:

CMDET

INTEGER*2 det, mat(n,n), n, iwl(n), iw2(n), iw3(n),
x i w 4 (n) , i e r r
CALL IMDET (det, mat, n, iwl, iw2, iw3, iw4, ierr)

COMPLEX det, mat(n,n)
INTEGER*2 n, iwl(n), iw2(n), iw3(n), iw4(n), ierr
CALL CMDET (det, mat, n, iwl, iw2, iw3, iw4, ierr)

First Edition, Update 2 18-18

M D E T F O R T R A N M A T R I X L I B R A R Y (M A T H L B)

Parameters

det

OUTPUT. Determinant of mat.

mat

INPUT. An n x n matrix,

n

INPUT. Integer indicating the dimension of mat,

i w l

SCRATCH. Work array with one subscript of dimension n.

iw2

SCRATCH. Work array with one subscript of dimension n.

iw3

SCRATCH. Work array with one subscript of dimension n.

iw4

SCRATCH. Work array with one subscript of dimension n.

i e r r

OUTPUT. Integer error flag. Returns one of two possible values:

i e r r M e a n i n g

0 Determinant calculated successfu l ly
1 n = 0; no determinant possible

Loading and Linking Information

V-mode with shared libraries: Load VMXLIB.

V-mode with unshared libraries: Load NVMXLIB.

R-mode: Load MATHLB.

1 8 - 1 9 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

MIDN

Purpose

This subroutine sets the n x n matrix mat equal to the n x n identity
matrix. That is:

mat (i,j) = 0 if i <> j
= 1 if i = j

Note

For double-precision, integer, or complex numbers, use DMIDN,
IMIDN, or CMIDN, respectively.

Usage

MIDN:

REAL*4 mat(n,n)
INTEGER*2
CALL MIDN (mat, n)

DMIDN:

IMIDN:

CMIDN:

REAL*8 mat (n ,n)
INTEGER*2 n
CALL DMIDN (mat, n)

INTEGER*2 mat(n,n), n
CALL IMIDN (mat, n)

COMPLEX mat(n,n)
INTEGER*2 n
CALL CMIDN (mat, n)

F i r s t E d i t i o n , U p d a t e 2 1 8 - 2 0

MIDN

Parameters

mat

FORTRAN MATRIX LIBRARY(MATHLB)

INPUT/OUTPUT. An n x n matrix.

INPUT. Integer indicating the dimension of mat.

r
Discussion

The form of the subroutine (that is, the data mode of mat) determines
the representation of 1 in the matrix, as follows:

Representation of 1

1.(SP)

l.(DP)

1

(l.,0) (each SP)

Data Mode Subroutine

Single-prec is ion MIDN

Double-precision DMIDN

Integer IMIDN

Complex CMIDN

Loading and Linking Information

V-mode with shared libraries: Load VMXLIB.

V-mode with unshared libraries: Load NVMXLIB.

R-mode: Load MATHLB.

18-21 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

MINV

Purpose

This subroutine calculates the inverse of the n x n matrix mati and
stores it in mato, if successful. The inverse of mati is mato if and
on ly i f :

mati * mato = mato * mati = I

where * denotes matrix multiplication and I is the n x n identity
matrix. You must supply an npl x npn work matrix, where npl = n + 1
and npn = n + n.

Note

For double-precision or complex numbers, use DMINV or CMINV,
respectively. There is no integer form of this subroutine as
there is no guarantee that the inverse of an integer matrix is
an integer matrix.

Usage

MINV:

DMINV:

CMINV:

REAL*4 ma to (n ,n) , ma t i (n , n) , wo rk (np l , npn)
INTEGER*2 n, npl, npn, ierr
CALL MINV (mato, mati, n, work, npl, npn, ierr)

REAL*8 ma to (n ,n) , ma t i (n , n) , wo rk (np l , npn)
INTEGER*2 n, npl, npn, ierr
CALL DMINV (mato, mati, n, work, npl, npn, ierr)

COMPLEX mato(n,n), mat i (n,n), work(npl ,npn)
INTEGER*2 n, npl, npn, ierr
CALL CMINV (mato, mati, n, work, npl, npn, ierr]

F i r s t E d i t i o n , U p d a t e 2 1 8 - 2 2

M I N V F O R T R A N M A T R I X L I B R A R Y (M A T H L B)

Parameters

mato

OUTPUT. Inverse of mati. An n x n matrix,

m a t i

INPUT. An n x n matrix,

n

INPUT. Integer indicating the dimension of mati.

work

SCRATCH. An npl x npn work matrix.

n p l

INPUT. Integer indicating the number of rows in work. Must be
equal to n + 1.

npn

INPUT. Integer indicating the number of columns in work. Must be
equal to n + n.

i e r r

OUTPUT. Integer error flag. Returns one of three possible values:

i e r r M e a n i n g

0 Inverted matrix stored in mato.
1 Matrix is singular; no inversion possible; mato

is fil led with zeros.
2 npl < > n + 1 and/or npn < > n + n.

No calculations performed.

Loading and Linking Information

V-mode with shared libraries: Load VMXLIB.

V-mode with unshared libraries: Load NVMXLIB.

R-mode: Load MATHLB.

1 8 - 2 3 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

MMLT

Purpose

This subroutine multiplies the nl x n2 matrix matl (on the left) by the
n2 x n_3 matrix matr (on the right) and stores the resulting nl x n3
product matrix in matp.

Note

For double-precision, integer, or complex numbers, use DMMLT,
IMMLT, or CMMLT, respectively.

Usage

MMLT:

DMMLT

IMMLT

CMMLT

REAL*4 matp(nl,n3), matl(nl,n2), matr(n2,n3)
INTEGER*2 nl, n.2, n3
CALL MMLT (matp, matl, matr, nl, n2, n3)

R E A L * 8 m a t p (n l , n 3) , m a t l (n l , n 2) , m a t r (n 2 , n 3]
INTEGER*2 nl, n2, n3
CALL DMMLT (matp, matl, matr, nl, n2, n3)

INTEGER*2 matp(nl,n3), matl(nl,n2), matr(n2,n3),
i n l , n 2 , n 3
CALL IMMLT (matp, matl, matr, nl, n2, n3)

COMPLEX matp(nl,n3), matl(nl,n2), matr(n2,n3)
INTEGER*2 nl, n2, n3
CALL CMMLT (matp, matl, matr, nl, n2, n3)

First Edition, Update 2 18-24

M M L - F O R T R A N M A T R I X L I B R A R Y (M A T H L B)

Parameters

matp

OUTPUT. Product of matl (on the left) and matr (on the right). An
nl x n3_ matrix.

ma t l

INPUT. An nl x n2 matrix,

ma t r

INPUT. An n2 x n3 matrix,

n l

INPUT. Integer indicating the number of rows in matl.

n2

INPUT. Integer indicating the number of columns in matl (same as
number of rows of matr).

n3

INPUT. Integer indicating the number of columns in matr.

Note

The name you supply for matp must be different from those you
supply for matl and matr. However, matl and matr may have the
same name. For example:

CALL MMLT (A, B, C, Nl, N2, N3) LEGAL
CALL MMLT (A, B, B, N, N, N) LEGAL
CALL MMLT (A, A, A, N, N, N) ILLEGAL
CALL MMLT (A, A, B, N, N, N) ILLEGAL
CALL MMLT (A, B, A, N, N, N) ILLEGAL

Loading and Linking Information

V-mode with shared libraries: Load VMXLIB.

V-mode with unshared libraries: Load NVMXLIB,

R-mode: Load MATHLB.

1 8 - 2 5 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

MSCL

Purpose

This subroutine multiplies the n x m matrix mati by the scalar constant
scon and stores the resulting n x m matrix in mato. By components,
s c a l a r m u l t i p l i c a t i o n i s d e fi n e d a s f o l l o w s :
mato (i,j) = scon * mati (i,j) for i from 1 to n, j from 1 to m.

Note

For double-precision, integer, or complex numbers, use DMSCL,
IMSCL, or CMSCL, respectively.

Usage

MSCL:

DMSCL:

IMSCL:

CMSCL:

REAL*4 mato(n,m), mati(n,m), scon
INTEGER*2 n, m
CALL MSCL (mato, mati, n, m, scon)

REAL*8 mato(n,m), mati(n,m), scon
INTEGER*2 n, m
CALL DMSCL (mato, mati, n, m, scon)

INTEGER*2 mato(n,m), mati(n,m), n, m, scon
CALL IMSCL (mato, mati, n, m, scon)

COMPLEX mato(n,m), mati(n,m), scon
INTEGER*2 n, m
CALL CMSCL (mato, mati, n, m, scon)

First Edition, Update 2 18-26

M S C L F O R T R A N M A T R I X L I B R A R Y (M A T H L B)

Parameters

mato

OUTPUT. The product of mati and scon. An n x m matrix,

mati

INPUT. An n x m matrix,

n

INPUT. Integer indicating the number of rows in mati.

m

INPUT. Integer indicating the number of columns in mati.

scon

INPUT. Scalar constant.

Loading and Linking Information

V-mode with shared libraries: Load VMXLIB.

V-mode with unshared libraries: Load NVMXLIB.

R-mode: Load MATHLB.

r
^ ^ > 1 8 - 2 7 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

MSUB

Purpose

This subroutine subtracts the n x m matrix mat2 from the n x m matrix
matl and stores the difference in the n x m matrix matd.

Note

For double-precision, integer, or complex numbers, use DMSUB,
IMSUB, or CMSUB, respectively.

Usage

MSUB:

DMSUB:

IMSUB:

CMSUB

REAL*4 matd(n,m), matl(n,m), mat2 (n,m)
INTEGER*2 n, m
CALL MSUB (matd, matl, mat2, n, m)

REAL*8 matd(n,m), matl(n,m), mat2(n,m)
INTEGER*2 n, m
CALL DMSUB (matd, matl, mat2, n, m)

INTEGER*2 matd(n,m), matl(n,m), mat2(n,m), n, m
CALL IMSUB (matd, matl, mat2, n, m)

COMPLEX matd(n,m), matl(n,m), mat2(n,m)
INTEGER*2 n, m
CALL CMSUB (matd, matl, mat2, n, m)

F i r s t E d i t i o n , U p d a t e 2 1 8 - 2 8

M S U B F O R T R A N M A T R I X L I B R A R Y (M A T H L B)

Parameters

matd

OUTPUT. The difference matl - ma__2. An n x m matrix,

mat l

INPUT. An n x m matrix.

mat2

INPUT. An n x m matrix.

INPUT. Integer indicating the row dimension of the input
matr ices.

m

INPUT. Integer indicating the column dimension of the input
matr ices.

Loading and Linking Information

V-mode with shared libraries: Load VMXLIB.

V-mode with unshared libraries: Load NVMXLIB,

R-mode: Load MATHLB.

1 8 - 2 9 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

MTRN

Purpose

This subroutine calculates the transpose of the n x n matrix mati and
stores it in the n x n matrix mato. The relationship between mati and
mato is as follows: mato (i,j) = mati (j,i) for i, j = 1 to n.

Note

For double-precision, integer, or complex numbers, use DMTRN,
IMTRN, or CMTRN, respectively.

Usage

MTRN:

DMTRN

IMTRN:

CMTRN:

REAL*4 mato(n,n), mati(n,n)
INTEGER*2 n
CALL MTRN (mato, mati, n)

REAL*8 mato(n,n), mati(n,n)
INTEGER*2 n
CALL DMTRN (mato, mati, n)

INTEGER*2 mato(n,n), mati(n,n), n
CALL IMTRN (mato, mati, n)

COMPLEX mato(n,n), mati(n,n)
INTEGER*2 n
CALL CMTRN (mato, mati, n)

First Edition, Update 2 18-30

M T R N F O R T R A N M A T R I X L I B R A R Y (M A T H L B)

Parameters

mato

OUTPUT. The transpose of mati. An n x n matrix,

m a t i

INPUT. An n x n matrix,

n

INPUT. The dimension of mati.

Note

You must supply different names for mato and mati.

Loading and Linking Information

V-mode with shared libraries: Load VMXLIB.

V-mode with unshared libraries: Load NVMXLIB.

R-mode: Load MATHLB.

1 8 - 3 1 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

PERM

Purpose

PERM computes the next permutation of n elements with a single
interchange of adjacent elements at each call. The first call to PERM
re tu rns the permuta t ion 1 , 2 , 3 , . . . , n . Th is subrou t ine i s
self-initializing and proceeds through all n! permutations. At the
last permutation it returns a value of last = 1 and resets itself. You
may reinitialize the PERM subroutine by passing a new value of n or by
passing the restrt parameter with a value of 1. The restrt parameter
is optional and can be omitted. If you do not want to reinitialize the
routine, either omit restrt from the calling sequence or set it to a
value of 0.

Usage

INTEGER*2 iperm(n), n, iwl(n), iw2(n), iw3(n),
: l a s t , r e s t r t

CALL PERM (iperm, n, iwl, iw2, iw3, last, restrt)

Parameters

iperm

i w l

iw2

OUTPUT. Array with one subscript of dimension n. Contains the
permutation returned by the subroutine.

INPUT. The number of elements from which permutations are to be
generated. A new value of n reinitializes the subroutine, n must
be greater than 2.

SCRATCH. Work array with one subscript of dimension n,

SCRATCH. Work array with one subscript of dimension n.

iw3

SCRATCH. Work array with one subscript of dimension n.

F i r s t E d i t i o n , U p d a t e 2 1 8 - 3 2

P E R M F O R T R A N M A T R I X L I B R A R Y (M A T H L B)

l a s t

OUTPUT. When re tu rned w i th va lue o f 1 , ind ica tes tha t the
currently returned permutation is the last.

r e s t r t

I N P U T. O p t i o n a l . W h e n r e s t r t = 1 , t h e s u b r o u t i n e i s
re in i t ia l ized. When rest r t =0 or is omi t ted, the subrout ine is
n o t r e i n i t i a l i z e d .

Note

The calling program should not attempt to modify iperm, iwl,
i w 2 , o r i w 3 . F o r f u r t h e r d e t a i l s , s e e G i d e o n E h r l i c h ,
"Loopless Algorithms for Generating Permutations, Combinations,
and Other Combinatorial Configurations," Journal of the ACM,
vol. 20, no. 3, July 1973, pp. 500-513.

Loading and Linking Information

V-mode with shared libraries: Load VMXLIB.

V-mode with unshared libraries: Load NVMXLIB,

R-mode: Load MATHLB.

1 8 - 3 3 F i r s t E d i t i o n , U p d a t e 2

APPENDIXES

Error Handling

r

INTRODUCTION

This appendix discusses PRIMOS error messages
error-handling conventions for Rev. 17 and later.

and codes, and

ERROR CODES

In most languages, error codes may be treated as data names rather than
as numbers. For a full explanation of each error code with comments on
possible causes and solutions of the error indicated, see Volume 0 of
the Advanced Programmer's Guide.

All the file management system routines described in Subroutines
Reference II: File System, and most other new subroutines, employ
error-handling procedures that are standard to PRIMOS subsystems.
These procedures replace the older systems using ERRVEC (Appendix B)
and the altrtn argument used for the IOCS subroutines in this volume.

A-1 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

The Return Code Parameter

All error codes, formerly placed in ERRVEC, are now returned to the
user in a 16-bit halfword user-supplied integer variable called code in
the Subroutines Reference series. For example, in the call:

CALL PRWF$$ (KEY,UNIT,LOC(BFR),NW,POS,RNW, CODE)

CODE is an integer that PRWF$$ sets to the appropriate return code.
CODE should always be checked for zero or nonzero to ensure that errors
do not go unnoticed. An example is:

CALL CREA$$ (NAME,NAMLEN,OPASS,NPASS,CODE)
IF (CODE.NE.0) GOTO 99

Standard System Error Code Definitions

Standard system error codes are variables with standardized names. In
all cases, E$OK means no error. Any other value identifies a
particular error or exceptional (not necessarily error) condition. All
reference to specific code values should be by the standardized names
in languages where they are available. For convenience, all names are
defined in files in the SYSCOM directory on Volume 1 of the master
disk. They are:

FORTRAN 77 ERRD.INS.FTN
FORTRAN IV ERRD.INS.FTN
PA S C A L E R R D . I N S . PA S C A L
PL1G and PL/I ERRD.INS.PLl
C E R R D . I N S . C C
P M A E R R D . I N S . P M A
B A S I C / V M N o t a v a i l a b l e
C O B O L N o t a v a i l a b l e

These should be included in the program with $INSERT for FORTRAN and
PMA, or %INCLUDE for Pascal and PL/I.

THE ERROR-HANDLING SUBROUTINES ER$PRINT AND ER$TEXT

ER$PRINT and ER$TEXT take advantage of this error-handling facility
provided by the code parameter, but they also allow error-handling in
user-defined subroutines without the need for an altrtn argument.

Refer to Subroutines Reference III: Operating System for a full
description of these subroutines.

F i r s t E d i t i o n , U p d a t e 2 A - 2

Error Handling
for I/O Subroutines

INTRODUCTION

The following describes obsolete error-handling procedures for the I/O
subroutines. These procedures have been replaced by return codes and
the subroutine ER$PRINT. (See Appendix A) .

Genera l l y, e r ro r -message and s ta tus in fo rmat ion f rom PRIMOS I /O
subroutines and some older PRIMOS routines are placed in a system-wide
error vector, ERRVEC, described later in this appendix. If an error
occurs, the user program returns to PRIMOS command level and the error
and/or status information is placed in ERRVEC. Upon completion of a
call to an I/O subroutine, status information is also placed in ERRVEC,
which the user may access through a call to GINFO or PRERR. The
contents of this vector are listed later in this appendix.

If the FORTRAN user so desires, it is possible to take an alternate
return i f an error occurs. This is specified by use of the altr tn
parameter in the cal l to the I /O subrout ine invoked by the user
program. I f the user specifies an altr tn, then the location of the
return and the action taken are entirely up to the user.

SUBROUTINES FOR ERROR HANDLING

There are three subroutines that can be used for setting or retrieving
information in ERRVEC. They are: ERRSET, GETERR, PRERR. Each is
described on the following pages.

B - l F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

ERRSET

Purpose

ERRSET sets ERRVEC, a system vector, then performs an alternate return
or displays the message stored in ERRVEC and returns control to the
system.

Usage

DCL ERRSET ENTRY(CHAR(4), FIXED BIN(15));

CALL ERRSET (altval, altrtn);

(or)

DCL ERRSET ENTRY(CHAR(4), FIXED BIN(15), CHAR(*), FIXED BIN(15]

CALL ERRSET (altval, altrtn, messag, num);

(or)

DCL ERRSET ENTRY(CHAR(4), FIXED BIN(15), CHAR(6),
CHAR(*), FIXED BIN(15));

CALL ERRSET (altval, altrtn, name, messag, num);

Note

In Form 1, altval must have the value 100000 octal, and altrtn
specifies where control is to pass. If altrtn is 0, the
message stored in ERRVEC is printed and control returns to the
system. Forms 2 and 3 are similar; therefore, the arguments
are described collectively as shown below.

Parameters

a l t v a l

INPUT. A two-halfword array that contains an error code that
replaces ERRVEC(l) and ERRVEC(2). altval (1) must not be equal to
100000 octal.

F i r s t E d i t i o n , U p d a t e 2 B - 2

E R R S E T I / O E R R O R H A N D L I N G

a l t r t n

INPUT. A FORTRAN or PLl label in the call ing program, here
preceded by a dollar sign. If altrtn is nonzero, control goes to
altrtn. If altrtn is 0, the message stored in ERRVEC is displayed
and control returns to PRIMOS.

name

INPUT. The name of a three-halfword array containing a six-letter
word. This name replaces ERRVEC(3), ERRVEC(4), and ERRVEC(5). If
name is not an argument in the call, ERRVEC(3) is set to 0.

messag

num

OUTPUT. An array of characters stored two per halfword. A pointer
to this messag is placed in ERRVEC(7).

INPUT. The number of characters in messag. The value of num
replaces ERRVEC(8).

D i s c u s s i o n

If a message is to be displayed, first, six characters start ing at
ERRVEC(3) are printed at the terminal. Then the operating system
checks to determine the number of characters to be printed. This
information is contained in ERRVEC(8). The message to be printed is
pointed to by ERRVEC(7). The operating system only prints the number
of characters from the message (pointed to by ERRVEC(7)) that are
indicated in ERRVEC(8). If ERRVEC(3) is 0, only the message pointed to
by ERRVEC(7) is printed. The message stored in ERRVEC may also be
printed by the PRERR command or the PRERR subroutine. The contents of
ERRVEC may be obtained by calling subroutine GETERR.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

B - 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

GETERR

Purpose

A user calls GETERR to obtain the contents of ERRVEC

Usage

DCL GETERR ENTRY(CHAR(*), FIXED BIN(15);

CALL GETERR (xervec, n);

Parameters

xervec

INPUT. Array assigned to hold the contents of ERRVEC,

INPUT. The number of halfwords to move from ERRVEC into xervec

Discussion

GETERR moves n halfwords from ERRVEC into xervec. To access
information from ERRVEC use the proper offsets into xervec to achieve
the following:

On an Alternate Return:

ERRVEC(1) Error code

ERRVEC(2) Alternate value

On a Normal Return:

PRWFIL:
ERRVEC(3) Record number
ERRVEC(4) Word number

SEARCH:
ERRVEC(2) File type

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

First Edition B-4

I/O ERROR HANDLING

PRERR

Purpose

PRERR displays an error message on the user's terminal,

Usage

CALL PRERR

Loading and Linking Information

FTNLIB — R-mode
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

Example

A user wants to retain control on a request to open a unit for reading
if the name was not found by SEARCH. To accomplish this, the program
calls SEARCH and gets an alternate return. It then calls to GETERR and
determines if an error occurred other than NAME NOT FOUND. To print
the error message while maintaining program control, the user calls
PRERR.

DESCRIPTION OF ERRVEC

ERRVEC consists of eight halfwords; their contents are as follows

Word Content

ERRVEC(1) Code

(2) Value

Remarks

Indicates origin of error and
nature of error.

On alternate return, this is the
value of the A-register. On normal
return, this may have special
meaning. (Refer to PRWFIL and
SEARCH error codes below.)

B-5 First Edition

SUBROUTINES, VOLUME IV PRERR

Word Content

(3) X X
(4) X X
(5) X X
(6) X X

(7) Pointer to
message

Remarks

ERRVEC(3), ERRVEC(4), and ERRVEC(5)
contain a six-character fi lename
of the routine that caused the
error. (ERRVEC(6) is available for
expansion of names.)

For PRIMOS supervisor use.

(8) Message
length

For PRIMOS supervisor use.

PRWFIL Error Codes

Code

PD UNIT NOT OPEN

PE PRWFIL EOF
(End of File)

ERRVEC(2)).

PG PRWFIL EOF
(Beginning of
F i l e)

Meaning

Number of halfwords left
(Information is in R

Number of halfwords left
(Information is in ERRVEC(2))

PRWFIL Normal Return

ERRVEC(3)

ERRVEC(4)

Record number

Word number

PRWFIL Read-Convenient

ERRVEC(2) Number of halfwords read.

First Edition B-6

P R E R R I / O E R R O R H A N D L I N G

SEARCH Error Codes

ERRVEC(1) Code, with one of the following values:

C o d e M e a n i n g

SA SEARCH, BAD PARAMETER

S D U N I T N O T O P E N (t r u n c a t e)

SD UNIT OPEN ON DELETE

S H < F i l e n a m e > N O T F O U N D

S I U N I T I N U S E

S K U F D F U L L

S L N O U F D AT TA C H E D

S Q S E G - D I R - E R

D J D I S K F U L L

SEARCH Normal Return

ERRVEC (2) Type, with one of the following values:

T y p e M e a n i n g

0 F i l e i s S A M .

1 F i l e i s D A M .

2 S e g m e n t d i r e c t o r y i s S A M .

3 S e g m e n t d i r e c t o r y i s D A M .

4 U F D i s S A M .

B - 7 F i r s t E d i t i o n

SVC Information

SUPERVISOR CALL INSTRUCTIONS CALLED BY PRIMOS SUBROUTINES

This Appendix defines Supervisor Call (SVC) Instructions that are
called by PRIMOS subroutines. The SVC instructions are all described
in this documentation set unless otherwise noted. SVC numbers used by
PRIMOS are listed in Table C-l.

SVC INTERFACE FOR I/O CALLS

The I/O subroutines described in Chapter 7 interface with the operating
system by means of SVC instructions. This appendix describes these
in ter faces.

SVC INTERFACE CONSIDERATIONS

Disk

The disk interfaces with virtual memory through a SVC instruction to
perform a READ or WRITE operation on a single physical record of a
physical disk. The disk must be assigned to the terminal by the ASSIGN
command. Refer to RRECL and WRECL in Chapter 5. For information about
the SVC instruction, refer to the Assembly Language Programmer's Guide.

C - l F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

Magnetic Tape

MPC Line Printer

Output to the parallel interface line printer is accomplished through
SVC calls. Refer to T$LMPC in Chapter 7.

MPC Card Reader

Input from the parallel interface card reader is controlled through SVC
calls. Refer to T$CMPC in Chapter 7.

OPERATING SYSTEM RESPONSE TO AN SVC INSTRUCTION

The operating system response to an SVC instruction includes a
"return-to-sender" capabil i ty. The format is an SVC instruction
followed by a halfword encoded as follows:

B i t s M e a n i n g

1 U s e i n t e r l u d e r o u t i n e

2 R e t u r n t o s e n d e r

3 - 4 Z e r o

5 - 1 0 S V C c l a s s

1 1 - 1 6 S V C s u b c l a s s

When bit 1 is set, the operating system assumes the location preceding
the SVC instruction is a subroutine entry point and looks for the
arguments back through that entry point.

When bit 2 is set, the operating system either performs the requested
function or, if the class and subclass are not recognized, returns to
the caller at the location following the SVC code halfword.

F i r s t E d i t i o n C - 2

SVC INFORMATION

The four legal syntaxes are

1.

SVC
OCT OOxxyy
DAC
DAC

OCT

2

3.

4.

Ent DAC **
SVC
OCT lOxxyy

SVC
OCT 04xxyy
(return-to-sender location)
DAC
DAC

OCT 0

Ent DAC **
SVC
OCT 14xxyy
(return-to-sender location)

In all cases above:

xx = 6-bit class

yy = 6-bit subclass

C - 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

The following classes are currently assigned:

0 RTOS

1 File system miscellaneous

2 Sequential file I/O

3 Direct file I/O

4 -

5 DOSVM only; never reflected

6 Command input/output

7 Typers

10 Mag tape

11 Line printer

12 Card reader/punch

13 SMLC

77 Reserved for customer use

F i r s t E d i t i o n C - 4

SVC INFORMATION

Number

*1500
!1400
0100

*0507
*0601

0602
*1515
!0113
1415

*0604
*0600
*1516
!1416
0603

*1523
!0401
*1501
!1401
0506

!0410
*0705

*1524
*1402
!0106
0114

*0105
.'0400
*0115
!0402
0110

0112
*1504
!1404

AC$CAT
AC$CHG
AC$DFT
AC$LST
AC$SET
APSFX
ASNLN$
ATCH$$
ATTAC$
ATTACH
BREAK$
C1IN
CALAC$
CAT$DL
CMREAD
CNAM$$
CNAME
CNAME$
CNIN$
COMANL
COMI$$
COMIN$
COMINP
COMO$$
CONECT
CREA$$
CREAT$
D$INIT
DIR$RD
DISCON
DUPLX$
ENT$RD
ERKL$$
ERRPR$
ERRTN
ERRSET
EXIT
FAMSVC
FORCEW
GETCON
GETERR
GETID$
GINFO
GPAS$$
GPASS$
GPATH$
ISACL$
NAMEQ$

Table C-l
SVC Numbers Used by PRIMOS

Associated Call

object-path, category-name, code)
name, acl-ptr, code)
name, code)
name, acl-ptr, max-entries, acl-name, acl-type, code)
key,name, acl-ptr, code)
in-pathname, out-pathname, suffix, status)
k e y, l i n e , p r o t o c o l , c o n fi g , l w o r d , s t a t u s)
ufdnam,namlen, ld isk,passwd,(key code))
u fdnam,namlen , ld isk ,passwd, (key, loc (code)))
u f d n a m , l d i s k , p a s w d , (k e y, a l t r t n))
o f f o n)
char)
name, id-ptr, acess-needed, access-gotten, code)
name, code)
char)
oldnam,oldlen,newnam,newlen,code)
o ldnam,newnam,al t r tn)
o ldnam,o ld len,newnam,newlen, loc(code))
b u f f , c h a r c n t , s t a t v (3))

fi l n a m , n a m l e n , u n i t , c o d e)
fi l n a m , n a m l e n , u n i t , l o c (c o d e))
fi l n a m , u n i t , (a l t r t n))
key, fi l nam,nam len , xxxxxx , code)
t g t n a m , t g t u s r , l u n , d a t a , s t a t v , l i n t y p)
ufdnam,namlen,opass,npass,code)
ufdnam,namlen,opass,npass, loc(code))
pdev)
key, uni t , return-ptr, max-return- len, code)
l u n , d a t a , s t a t v)
key)
unit , name, return-ptr, max-return-len, code)
k e y, e r a s e c , k i l l c , c o d e)
k e y, c o d e) , t e x t , t x t l e n , n a m e , n a m l e n)
a l t r tn ,name,msg,msg len)
a l t v a l , a l t r t n , n a m e , m s g l e n)

a l , a 2 , a 3 , a 4 , a 5 , a 6 , a l t r t n)
k e y, u n i t)
t a r g e t , u s e r , d a t a , s t a t v)
b u f f , h w)
if-ptr, max-groups, code)
b u f f , n w)
ufdnam,namlen,opass,npass,code)
ufdnam,namlen,opass,npass,code)
key, funit , buffer, bufflen, pathlen, code)
unit, code)
filnaml, namlenl, filnam2, namlen2)

C-5 F i r s t Ed i t i on

SUBROUTINES, VOLUME IV

Table C-l (continued)
SVC Numbers Used by PRIMOS

Number Associated Call

!0412 NETLNK (statv)
!0406 NETWAT
!0407 NTSTAT (k e y, p i , p 2 , a r r a y)

PA$DEL (part i t ion-name, code)
PA$LST (name, acl-ptr, max-entries, code)
PA$SET (par t i t ion-name, ac l -p t r, code)

0111 PRERR
*1506 PRWF$$ (k e y, F u n i t , l o c (b f) , b fl e n , p o s 3 2 , r n w, c o d e)

0300 PRWFIL (k e y , u n i t , l o c (b u f f) , n , p o s , a l t r t n)
!1406 PRWFL$ (k e y, u n i t , l o c (b u f f) , n w, p o s , r n w, l o c (c o d e))

Q$READ (buf, buflen, type, code)
Q$SET (key, ufdnam, namlen, amount, code)

*1507 RDEN$$ (k e y, f u n i t , b f , b fl n , r n w, n a m 3 2 , n a m l n , c o d e)
!1407 RDENT$ (key,un i t ,buff ,buflen,Rnw, name32,namlen, loc(code))
!0202 RDLIN < u n i t , l i n e , n w , a l t r t n)
*1525 RDLIN$ (u n i t , l i n e , n w, c o d e)
*1517 RDTK$$ (key, i n fo (8) ,bu f f , buflen , code)
11417 RDTKN$ (k e y, i n f o (8) , b u f f , b u fl e n , l o c (c o d e))
!0404 RECEIV < l u n , l o c (b u f f) , n w, s t a t v)
*0505 RECYCL
*1520 REST$$ rvec,name,namlen,code)
!1420 RESTO$ rvec,name,namlen, loc(code))
0103 RESTOR r v e c , n a m e , a l t r t n)

*1521 RESU$$ name,namlen)
•1421 RESUM$ name,namlen)
0104 RESUME name)

!0403 RJCON t a r g e t , u s e r, s t a t v, n u m t y p)
!0500 RREC (l o c (b u f f) , b u fl e n , n , r a , p d e v , (a l t r t n))
0516 RRECL i l o c (b u f f) , b u fl e n , n , r a 3 2 , p d e v, (a l t r t n))

*1510 SATR$$!key,name,namlen,array,code)
11410 SATTR$!key,name,namlen,ar ray, loc(code))
0102 SAVE (rvec,name)

!1422 SAVE$ [rvec,name,namlen, loc(code))
*1522 SAVE$$ [rvec,name,namlen,code)
11411 SEARC$ ikey,name,namlen ,un i t , t ype , l oc (code))
0101 SEARCH (k e y, n a m e , u n i t , (a l t r t n))

!1414 SEGDR$ (k e y, u n i t , e n t r y a , e n t r y b , l o c (c o d e))
*1512 SGDR$$ (k e y, f u n i t , e n t r y a , e n t r y b , c o d e)
* — SEM$DR [semnum,code)
* — SEM$NF (semnum,code)
* — SEM$TN (semnum,int32,int32, code)
* — SEM$TS [senmun,code) (int fen)
* — SEM$WT [semnum,code)
* — SLEEP$ (i n t 3 2)
!*1513 SPAS$$ (opass ,npass , loc(code))
1413 SPASS$ (key,name,namlen,un i t , type,code)

*1511 SRCH$$ (key,name,namlen,un i t , t ype ,code)

First Edition C-6

SVC INFORMATION

Table C-l (continued)
SVC Numbers Used by PRIMOS

Number Associated Call

SRSFX$ (key, pathname, unit, type, n-suffixed, suffix-list,
basename, suffix-used, status)

*0513 T$AMLC (line,loc(buff),nw,inst.statv)
*0512 T$CMPC (unit,loc(buff),nw,inst,statv)
*0511 T$LMPC (unit,loc(buff),nw,inst,statv)
*0515 T$PMPC (unit,loc(buff),nw,inst,statv)
*0510 T$MT (un i t , loc(buff) ,nw, ins t ,s ta tv)
*0514 T$VG (un i t , loc(buff) ,nw, ins t ,s ta tv)
!1001 T$SLC0 (key,line,loc(buff),nw)
*0502 TIMDAT (buff,buflen)
*0702 TNOU (msg,charcnt)
*0703 TNOUA (msg,charcnt)
!0405 TRNMIT (lun,loc(buff),ent,statv)

TSRC$$ (ation+newfil, pathname, funit, chrpos, type, code)
UPDATE

!0411 UNLINK
!0501 WREC (loc(buff),buflen,n,ra,pev, (altrtn))
0517 WRECL (loc(buff),buflen,n,ra32,pdev,(altrtn))

!0203 WTLIN (unit , l ine,nw,(al tr tn))
*1526 WTLIN$ (unit,line,nw,code)

* = Also direct entrance call
! = Not described in volumes of the

Subroutines Reference Guide

C-7 First Edition

Obsolete Indication
and Control Subroutines

OVERVIEW

The subroutines described in this appendix return a message or an error
indicator value in AC5, or set a value depending on some machine
condition. The subroutines are:

DISPLY

OVERFL

SLITE

SLITET

SSWTCH

Note

The subroutines described in this appendix are not currently
available in V-mode under PRIMOS.

D - l F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

DISPLY

Purpose

DISPLY updates the sense light settings according to al. The bit
values of al (l=on, 0=off) correspond to switch/light settings
which are displayed on the computer control panel.

Usage

INTEGER*2 al
CALL DISPLY (al)

Loading and Linking Information

FTNLIB — R-mode
SVCLIB — R-mode

F i r s t E d i t i o n D - 2

OBSOLETE SUBROUTINES

OVERFL

Purpose

If entry into F$ER was made, a_L (in location AC5) is given a value
1; otherwise it is set to 2. F$ER is left in the no error
condition. OVERFL is called to check if an overflow condition has
occurred.

Usage

INTEGER*2 al
CALL OVERFL (al)

Loading and Linking Information

FTNLIB — R-mode
SVCLIB — R-mode

D - 3 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

SLITE

Purpose

SLITE sets the sense light specified in al on or sets all sense
lights off. If al=0, all sense lights are reset off.

Usage

INTEGER*2 al
CALL SLITE (al)
CALL SLITE (0)

Loading and Linking Information

FTNLIB — R-mode
SVCLIB — R-mode

F i r s t E d i t i o n D - 4

OBSOLETE SUBROUTINES

SLITET

Purpose

SLITET tests the setting of a sense light specified by al. The
result of this test (1 for on, 2 for off) is in the location
specified by r.

Usage

INTEGER*2 al, r
CALL SLITET (al,r)

Loading and Linking Information

FTNLIB — R-mode
SVCLIB — R-mode

D - 5 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

SSWTCH

Purpose

SSWTCH tests the setting of a sense switch specified by al. The
result of this test (l=set, 2=reset) is stored in the location
specified in r.

Usage

INTEGER*2 al, r
CALL SSWTCH (al,r)

Loading and Linking Information

FTNLIB — R-mode
SVCLIB — R-mode

F i r s t E d i t i o n D - 6

Other Obsolete
Subroutines

This appendix conta ins descr ip t ions for obsolete subrout ines. Table
E-1 lists the obsolete subroutines described in this appendix.

Table E-1
Obsolete Subroutines

O$AD07
C$Mxx
0$AMxx
I$AMxx
0$BMxx
I$BMxx

E-1 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV

O$AD07

Purpose

O$AD07 writes ASCII from buffer onto a disk file open on file_unit
O$AD07 is obsolete and has been replaced with WTLIN$.

Usage

DCL O$AD07 ENTRY(FIXED BIN(15), CHAR(*) VARYING,
FIXED BIN(15), FIXED BIN(15));

CALL O$AD07 (file_unit, buffer, count, altrtn);

Parameters

fi l e _ u n i t

INPUT. The PRIMOS file unit (funit) number from 0 through 327 61.
(Users may assign 2 through 32761.) Since a file unit has a
position and access method, a user program need not keep track of a
file's position and access. Examples of file unit strategy are
given with SRCH$$ in Volume II.

b u f f e r

INPUT. The name of a data area in memory from which data is moved
to the disk file.

count

INPUT. The number of halfwords to be transferred, or the length in
halfwords of a buffer or filename.

a l t r t n

INPUT. The value of a numeric label in the user's FORTRAN program,
to be used as an alternate return from the subroutine in case of
error. The label number should be preceded by a $. FORTRAN calls
may omit the argument or give it the value of 0 if no alternate
return is wanted. PL/I programs may also use altrtn, but its label
must be in the same stack frame used for the code of the calling
module. Other calling languages should omit the argument, but not
use 0.

First Edition E-2

O $ A D 0 7 O T H E R O B S O L E T E S U B R O U T I N E S

Discussion

Information is written on the disk in compressed ASCII format.
Multiple blank characters are replaced with the character DC1 (221
octal) followed by a halfword count. Trailing blanks are removed and
the end of record indicated by the NEWLINE character, or NEWLINE
followed by null.

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)r

r
r E - 3 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

Table E-2
Obsolete Magnetic Tape Subroutines

9-Track

C$M05
C$M13
O$AM05
I$AM05
O$BM05
I$BM05
0$AM13
I$AM13

Control for 9-track ASCII and binary.
Control for 9-track EBCDIC.
Write ASCII.
Read ASCII.
Write binary.
Read binary.
Write EBCDIC.
Read EBCDIC.

7-Track

C$M10
C$M11
O$AM10
I$AM10
O$BMl0
I$BM10
0$AM11
I$AM11

Control for 7-track ASCII and binary,
Control for 7-track BCD.
Write ASCII.
Read ASCII.
Write binary.
Read binary.
Write BCD.
Read BCD.

Note

T$MT has replaced
0$AM13 and I$AM13.

all the subroutines in Table E-2 except

First Edition, Update 2 E-4

OTHER OBSOLETE SUBROUTINES

C$Mxx

Purpose

T h e s e s u b r o u t i n e s p r o v i d e p a r t i c u l a r c o n t r o l f u n c t i o n s f o r e i t h e r
7-track or 9-track magnetic tape machines, as shown in Table E-2.
S ince they share ident ica l subrout ine ca l l ing formats , the i r Usage
descriptions are given the generic name C$Mxx, where xx stands for the
numbers of the particular subroutine needed.

Usage

DCL C$Mxx ENTRY(FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15));

CALL C$Mxx (key, reserved, physical—unit,
a l t r t n) ;

Parameters

key

INPUT. Indicates a user option and may be one of the following:

-4 Rewind to BOT (Beginning of Tape).

- 3 B a c k s p a c e o n e fi l e m a r k .

- 2 B a c k s p a c e o n e r e c o r d .

- 1 W r i t e fi l e m a r k .

1 O p e n t o r e a d .

2 O p e n t o w r i t e .

3 O p e n t o r e a d / w r i t e .

4 C l o s e . (Wr i t e fi l e m a r k a n d r e w i n d) .

5 M o v e f o r w a r d o n e r e c o r d .

6 Move fo rward one fi le mark .

7 Rewind to BOF (Beginning of fi le)

8 Se lec t dev i ce and read s ta tus .

E-5 F i r s t E d i t i o n

S U B R O U T I N E S , V O L U M E I V C $ M x x

reserved

Not used.

phys ica l_uni t

INPUT. 0-7 (0-3 for PRIMOS II), depending on which device is
ASSIGNed).

a l t r t n

INPUT. Alternate return for FORTRAN programs calling this
subroutine in case of end of file or other error.

Discussion

These routines call T$MT and ERRSET.

Error Messages: If an error occurs during subroutine execution, the
user program returns to PRIMOS command level and the error and/or
status information is placed in a system-wide error vector called
ERRVEC. When an I/O subroutine returns, status information is also
placed in ERRVEC. The user may access it through a call to GINFO or
PRERR. These subroutines return values to ERRVEC(1) and ERRVEC(2) that
may be interpreted as indicated below. For a thorough discussion of
ERRVEC, refer to Appendix B.

M e s s a g e M e a n i n g

C$Mxx EOF End of file

C$Mxx EOT End of tape

C$Mxx MTNO Magtape not operational

C$Mxx PERR Parity error

C$Mxx HERR Hardware error

C$Mxx BADC Bad call

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

F i r s t E d i t i o n E - 6

ERRVEC(1) ERRVEC(2)

IE

ID

ID

ID

ID

ID

OTHER OBSOLETE SUBROUTINES

0$AMxx, l$AMxx, 0$BMxx, l$BMxx

Purpose

These subroutines provide read and write functions for magnetic tape
machines, as shown in Table E-2.

Since all these subroutines share the same calling sequence, the Usage
description gives sub$ for the subroutine name; the name of the
particular subroutine needed should be used at coding time.

Usage

DCL sub$ ENTRY(FIXED BIN(15), CHAR(*), FIXED BIN(15),
FIXED BIN(15));

CALL sub$ (physica] unit, buffer, nhw, altrtn);

Parameters

physica l_uni t

INPUT. The magnetic tape controller drives multiple sub-units.
Valid sub-unit numbers for this physical-device = 0, 1, 2, or 3.

b u f f e r

INPUT/OUTPUT. Data name of the area from or to which information
is tranferred.

nhw

INPUT/OUTPUT. Number of halfwords to be read or written. If nhw =
0, then the subroutine is to write a file mark.

a l t r t n

INPUT. Alternate return for FORTRAN programs calling this
subroutine in case of end of file or other error. (See Chapter
10.)

E - 7 F i r s t E d i t i o n

SUBROUTINES, VOLUME IV 0$AMxx, I$AMxx, 0$BMxx, I$BMxx

D i s c u s s i o n

Error Messages: If an error occurs during subroutine execution and an
altrtn has not been provided, the user program returns to PRIMOS
command level and the error and/or status information is placed in a
system-wide error vector cal led ERRVEC. When an I /O subrout ine
returns, status information is also placed in ERRVEC. The user may
access i t through a ca l l to GINFO or PRERR. These par t icu lar
subroutines return values to ERRVEC(1) and ERRVEC(2) that may be
in te rp re ted as ind ica ted be low. See Append ix B fo r a tho rough
discussion of ERRVEC.

M e s s a g e M e a n i n g

Subroutine EOF End of file

Subroutine EOT End of tape

Subroutine MTNO Magtape not operational

Subroutine PERR Parity error

Subroutine HERR Hardware error

Subroutine BADC Bad call

ERRVEC(1) ERRVEC(2)

IE

ID

ID

ID

ID

ID

Note

Parity error, PERR, occurs only after 25 parity or raw errors

Loading Information: These subroutines all call T$MT and ERRSET

Loading and Linking Information

FTNLIB — R-mode
NPFTNLB — V-mode (unshared)
PFTNLB — V-mode
SVCLIB — R-mode (maintained for PRIMOS-II)

F i r s t E d i t i o n E-8

Data Type
Equivalents

To call a subroutine from a program written in any Prime language, you
must declare the subroutine and its parameters in the calling program.
Therefore, you must translate the PL/I data types expected by the
subroutine into the equivalent data types in the language of the
calling program.

The table that follows shows the equivalent data types for the Prime
languages BASIC/VM, C, COBOL 74, FORTRAN IV, FORTRAN 77, Pascal, and
PL/I. The leftmost column lists the generic storage unit, which is
measured in bits, bytes, or halfwords for each data type. Each storage
unit matches the data types listed to the right on the same row. The
table does not include an equivalent data type for each generic unit in
all languages. However, with knowledge of the corresponding machine
representation, you can often determine a suitable workaround. For
instance, to see if you can use a left-aligned bit in COBOL 74, you
could write a program to test the sign of the 16-bit field declared as
COMP. In addition, if a subroutine parameter consists of a structure
with elements declared as BIT(n), it can be declared as an integer in
the calling program. Read the appropriate language chapter in the
Subroutines Reference I: Using Subroutines before using any of the
equivalents shown in the table.

Note

The term PL/I refers both to full PL/I and to PL/I Subset G
(PL/I-G).

F - l F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

Table F-l
Data Type Equivalents

Q .

FIXED BIN FIXED
BIN(15)

co
Q z
X co
l i - FLOAT BIN FLOAT

BIN(23) C_ co
LL.

b t
co co

LU
Z

~ o
f c <m

8ot
a.

r r " 2£_
O *
LU c

CC
LU
O
LU
H
Z
oz2

__i<
LU
OC

_ l<
LU
CC
Oz
2

LU

dom
z
<

2

W CVJ

DC ll
LU <
O O

i 2
CC CC _l ll
LU LU < <o o o o
LULU (3 5

1193
—I _J< <
LU LU
CC CC

co«
_ i<
U J
OC

(O
*
- J<
LU
OC

z<

l>
CVJ

CC CC _l
LU LU <

L U L U 5113

QC
LU
O
LUi

_ J l l< <
LU LU
CC CC

C O*
<
LU
CC

o
9= co o
O O 0-
O 0-

9=8o
O O Q -
O 0-

° c T
9= w o
oo OL
O 0-

Q l

O
o

cvj
CL

O

o
C EI s - c? J2 J?

(A

l l
55 __
S m

(0

_ i<
U J
cc

C O

l i<
U J
cc

o

l l
C5

IV-
CD

c

CD

k -

?c
15
CVJ
CO

Jw

$c
15i

! _
-9 c>
cvj .£
CO w

'ot
to £o a.

3-8

co !<2a _
•9-0
CO CO
CVJ 3i - o r

15

"8c

_D

First Edition, Update 2 F-2

DATA TYPE EQUIVALENTS

Ta b l e F - l (c o n t i n u e d)
Data Type Equivalents

o.

CO

OT
£

LU
CO

o TJ
CD
C
CO «_
OT C

55 £

co

s__cj 3a '4=
(A

_5

CC

O

O £ ILU 2 O
* * ! &< o5 85o

cc
LU

<Xo

_ _ < X L U
t O O O j
Q CL CL LL.

.c .
LU LU

< <z z

LU
OC

g
OL

5sb_ °>co o
o CL

a o
UJ UJ
X Q

CO
QL

Oo

a>
5.
. O

£ * - te
i1? c?c?c !

® 'C OT

-6 w -ri OT .tS
© .tr: ® - ^
X CO x a x i

L. TJ U- TJ CVJ

_ z

o

c
o
OC
i -co

UJ 5-J S cc

11.-6°

TJ

IE

OC
LU

2

©
c

TJ

I I

©
c'oQ.

15
5?

•«_ ,C»CX i^
Mo
CO -3
3 '3
eU

s
E *

■fll
£
3 <̂
<L>

»3

._>3
CO C>*.■5 25
.S i n
co ■S
J?
>> 15
u o .
E
4>

CO

o
-s
<4-lo bfl
4)e
&
L - ecj
,o u .

Q<co
TJ ha
C a.
3 a.
O ca
* o
■S

O o
Z u.
A) ,*><*H

X) 9>
ha

CO
COa

<4-lo
C
O 42
CO
CO
3 •?& 3

•6 ■c
-.

p fl>
U- ao

F - 3 First Edition, Update 2

INDEXES

Index of
Subroutines

By Name

A$xy series
ABSW

AC$CAT

AC$CHG
AC$DFT

AC$LIK

AC$LST
AC$RVT

AC$SET
ALC$RA

ALOC$S
ALS$RA

APSFX$
ASCS$$

ASCS$$

ASCSRT
AS$LIN

FORTRAN compiler addition functions.
Return cold-start setting of ABBREV

s w i t c h .
Add an object's name to an access

c a t e g o r y.
Modify an existing ACL on an object.
Set an object's ACL to that of its

pa ren t d i rec to ry.
Set an object's ACL like that of another

o b j e c t .
Obtain the contents of an object's ACL.
Convert an object from ACL protection

to password protection.
Set a specific ACL on an object.
Allocate space for EPF function return

i n f o r m a t i o n .
Allocate memory on the current stack.
Allocate space and set value of EPF

f u n c t i o n .
Append a specified suffix to a pathname.
Sort or merge sorted files (multiple

file types and key types).(V-mode)
Sort or merge sorted files (multiple

file types and key types).(R-mode)
Synonym for ASCS$$. See above.
Return asynchronous line number.

I I I

I I

I I
I I

I I

I V

I V

B-7
2-3

2-3

2-5
2-7

2-9

I I 2-11
I I 2-13

I I 2-15
I I I 4-16

I I I 4-3
I I I 4-21

I I 4-4
I V 17-12

17-42

8-32

SX-1 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

AS$LST

ASNLN$
AS$SET
ASSUR$

AT$

AT$ABS

AT$ANY

AT$HOM

AT$LDEV

AT$OR

AT$REL

ATCH$$

ATTDEV

Retrieve asynchronous line
c h a r a c t e r i s t i c s .

Assign AMLC line.
Set asynchronous line characteristics.
Check process has given amount of

t i m e s l i c e l e f t .
Set the attach point to a directory

specified by pathname.
Set the attach point to a specified

top- leve l d i rectory and par t i t ion.
Set the attach point to a specified

top-level directory on any parti t ion.
Set the attach point to the home

d i r e c t o r y .
Set the attach point by top-level

directory and logical disk number.
Set the attach point to the login

d i r e c t o r y .
Set the attach point relative to the

cu r ren t d i r ec to r y.
Set the attach point to a specified

d i r e c t o r y .
Change a device assignment temporarily,

I V 8-26

I V 8-21
I V 8-33
I I I 2-22

I I 3 -3

I I 3 -6

I I 3 -8

I I 3-10

I I 3 -11

I I 3-13

I I 3 -15

I I A-2

I V 3-6

BIN$SR
BNSRCH
BREAK$
BUBBLE

Perform binary search in ordered table. Ill 6-21
B i n a r y s e a r c h . I V 1 7 - 4 8
I n h i b i t o r e n a b l e B R E A K f u n c t i o n . I l l 3 - 5 0
B u b b l e s o r t . I V 1 7 - 5 0

C$xy series
C$A01
C$M05
C$M10
C$M11

C$M13

C$P02
C1IN
C1IN$
C1NE$
CALAC$

CASE$A
CAT$DL
CE$BRD

CE$DPT

CF$EXT

FORTRAN compiler conversion functions.
Control functions for user terminal.
Control functions for 9-track tape.
Control functions for 7-track tape.
Control functions for 7-track tape

(BCD).
Control functions for 9-track tape

(EBCDIC).
Control functions for paper tape.
Read a character.
Read a character.
Read a character, suppressing echo.
Determine whether an object is acces

sible for a given action.
Convert between upper- and lowercase.
Delete an access category.
Return caller's maximum command

environment breadth.
Return caller's maximum command

environment depth.
Extend or truncate a CAM file.

I B - 5
I V 6 - 5
I V E - 5
I V E - 5
I V E - 5

I V E - 5

I V 6-12
I I I 3 -5
I I I 3 -7
I I I 3 -9
I I 2-17

I V 14-2
I I 2-19
I I 6-3

I I 6-4

I I 4-130

First Edition, Update 2 SX-2

INDEX BY NAME

CF$REM
CF$SME
CH$FX1

CH$FX2

CH$HX2

CH$MOD
CH$0C2

CHG$PW
CKDYN$

CL$FNR

CL$GET
CL$PIX

CLINEQ
CLNU$S
CLO$FN
CLO$FU

CLOS$A
CMADD
CMADJ
CMBN$S
CMCOF
CMCON
CMDET
CMDL$A
CMIDN
CMINV
CMLV$E
CMMLT
CMSCL
CMSUB
CMTRN
CNAM$$

CNIN$
CNSIG$
CNVA$A
CNVB$A
CO$GET

COM$AB

COMANL
COMB
COMI$$

COMLV$

Get a CAM file's extent map.
Set a CAM file's extent length value.
Convert string (decimal) to 16-bit

i n teger.
Convert string (decimal) to 32-bit

i n teger.
Convert string (hexadecimal) to 32-bit

i n teger.
Change the open mode of an open file.
Convert string (octal) to 32-bit

i n teger.
Change login validation password.
Determine if routine is dynamically

accessible.
Close a file by name and return a bit

string indicating closed units.
Read a line.
Parse command line according to a

command line picture.
Solve linear equations (complex).
Close all sort units after SRTF$.
Close a file system object by pathname.
Close a file system object by file unit

number.
Close a file.
Matrix addition (complex).
Calculate adjoint matrix (complex).
Sort tables prepared by SETU$.
Calculate signed cofactor (complex).
Set constant matrix (complex).
Calculate matrix determinant (complex).
Parse a command line.
Set matrix to identity matrix (complex).
Calculate signed cofactor (complex).
Call new command level after an error.
Matrix multiplication (complex).
Multiply matrix by scalar (complex).
Matrix subtraction (complex).
Calculate transpose matrix (complex).
Change the name of an object in the

current directory.
Read a specified number of characters.
Continue scan for on-units.
Convert ASCII number to binary.
Convert binary number to ASCII.
Return information about command

output settings.
Expand a line using Abbreviations

preprocessor.
Read a line into a PRIMOS buffer.
Generate matrix combinations.
Switch input between the terminal and a

fi l e .
Call a new command level.

I I 4-132
I I 4-135
I I I 6-3

I I I 6-5

I I I 6-7

I I 4 -6
I I I 6 -9

I I I 2-23
I I I 2 -4

I I 4-7

I I I 3-10
I I 6-5

I V 18-7
I V 17-29
I I 4 -9
I I 4-10

I V 15-2
I V 18-9
I V 18-11
I V 17-27
I V 18-13
I V 18-16
I V 18-18
I V 16-2
I V 18-20
I V 18-22
I I I 5-5
I V 18-24
I V 18-26
I V 18-28
I V 18-30
I I 4 -11

I I I 3-13
I I I 7-19
I V 14-4
I V 14-6
I I I 3-52

I I I 2 -25

I I I 3-15
I V 18-5
I I I 3-53

I I I 5 - 6

SX-3 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

COMO$$

CONTRL

CP$
CPUID$
CREA$$

CREPW$
CSTR$A
CSUB$A
CTIM$A
CV$DQS
CV$DTB
CV$FDA
CV$FDV
CV$QSD

Switch output between the terminal
and a file.

Perform device-independent control
f u n c t i o n s .

Invoke a command from a running program.
Return model number of Prime computer.
Create a new subdirectory in the current

d i r e c t o r y .
Create a new password directory.
Compare two strings for equality.
Compare two substrings for equality.
Return CPU time since login.
Convert binary date to quadseconds.
Convert ASCII date to binary format.
Convert binary date to ISO format.
Convert binary date to "visual" format.
Convert quadsecond date to binary

f o r m a t .

I l l 3-55

I V 4-11

I I 6-9
I I I 2 -5
I I A-5

I I A-7
I V 10-2
I V 10-4
I V 12-2
I I I 6-12
I I I 6-13
I I I 6-15
I I I 6-17
I I I 6-19

D$xy series FORTRAN compiler division functions.
D $ I N I T I n i t i a l i z e d i s k .
D AT E $ R e t u r n c u r r e n t d a t e a n d t i m e .
DATE$A Re tu rn t oday ' s da te , Amer i can s t y l e .
D E L E $ A D e l e t e a fi l e .
D I R $ C R C r e a t e a n e w d i r e c t o r y.
D I R $ L S S e a r c h f o r s p e c i fi e d t y p e s o f e n t r i e s

in a directory open on a file unit.
D IR$RD Read sequent ia l l y the en t r ies o f a

directory open on a file unit.
D I R $ S E R e t u r n d i r e c t o r y e n t r i e s m e e t i n g c a l l e r -

sp e c i fie d se l e c t i o n c r i t e r i a .
D I S P LY U p d a t e s e n s e l i g h t s e t t i n g s .
D K G E O $ R e g i s t e r d i s k f o r m a t w i t h d r i v e r.
DLINEQ Solve a system of l inear equat ions

(double precis ion).
D M A D D M a t r i x a d d i t i o n s (d o u b l e p r e c i s i o n) .
D M A D J C a l c u l a t e a d j o i n t m a t r i x (d o u b l e

p r e c i s i o n) .
D M C O F C a l c u l a t e s i g n e d c o f a c t o r (d o u b l e

p r e c i s i o n) .
DMCON Set mat r i x to cons tan t mat r i x (doub le

p r e c i s i o n) .
D M D E T C a l c u l a t e d e t e r m i n a n t (d o u b l e

p r e c i s i o n) .
D M I D N S e t m a t r i x t o i d e n t i t y m a t r i x (d o u b l e

p r e c i s i o n) .
D M I N V C a l c u l a t e i n v e r t e d m a t r i x (d o u b l e

p r e c i s i o n) .
D M M L T M a t r i x m u l t i p l i c a t i o n (d o u b l e

p r e c i s i o n) .
DMSCL Mu l t i p l y ma t r i x by a sca la r (doub le

p r e c i s i o n) .

B-7
I V 5-13
I I I 2-8
I V 12-3
I V 15-3
I I 4-15
I I 4-17

I I 4-24

I I 4-29

I I I 10-3
I V 5-18
I V 18-7

I V 18-9
I V 18-11

I V 18-13

I V 18-16

I V 18-18

I V 18-20

I V 18-22

I V 18-24

I V 18-26

First Edition, Update 2 SX-4

INDEX BY NAME

DMSUB
DMTRN

DOFY$A

DS$AVL
DS$ENV

DS$UNI
DTIM$A
DUPLX$

DY$SGS

E$xy series

ECL$CC

ECL$CL

EDAT$A
ENCD$A
ENCRYPT$
ENT$RD

EPF$ALLC

EPF$CPF

EPF$DEL

EPF$INIT

EPF$INVK
EPFSMAP

EPF$RUN

EQUAL$

ERKL$$

ER$PRINT
ERRPR$
ERRSET
ER$TEXT
ERTXT$
EX$CLR
EX$RD
EX$SET
EXIT
EXST$A
EXTR$A

Matr ix subtract ion (double precis ion).
Calculate transpose matrix (double

p r e c i s i o n) .
Return today's date as day of year

(J u l i a n) .
Return data about a disk partition.
Return data about a process's

env i ronment .
Return data about file units.
Return disk time since login.
Control the way PRIMOS treats the user

t e r m i n a l .
Return maximum number of dynamic

segments.
FORTRAN compiler exponentiation

r o u t i n e s .
Supervise editing of input from terminal

or command file (callable from C).
Interface to ECL$CC

(for non-C programs).
Today's date, European (mil i tary) style.
Make a number printable if possible.
Encrypt login validation passwords.
Return the contents of a named entry

in a directory open on a file unit.
Perform the linkage allocation phase

for an EPF.
Return the state of the command

processing flags in an EPF.
Deactivate the most recent invocation

of a specified EPF.
Per form the l inkage in i t ia l i za t ion

phase for an EPF.
Initiate the execution of a program EPF.
Map the procedure images of an EPF file

into virtual memory.
Combine functions of EPF$ALLC, EPF$MAP,
EPF$INIT, and EPF$INVK.
Generate a filename based on another

name.
Read or set the erase and kill

c h a r a c t e r s .
Print error messages on terminal.
Print a standard error message.
Set ERRVEC (a system error vector).
Return error message to a variable.
Return text associated with error code.
Disable signalling of EXIT$ condition.
Return state of EXIT$ signalling.
Enable signalling of EXIT$ condition.
Return to PRIMOS.
Check for file existence.
Return an object's entryname and parent

directory pathname.

I V
I V

I V

18-28
18-30

12-4

I I I 2-51
I I I 2-53

I I I 2-57
I V 12-5
I I I 3-57

I I I 4-25

I B-8

I I I 3-28a

I I I 3-28d

I V 12-6
I V 14-8
I I I 6-24
I I 4-37

I I 5 -3

I I 5 -5

I I 5 -7

I I 5 -9

I I 5-11
I I 5-15

I I 5-19

I I 4-39

I I I 3-60

I I I 3-31
I I I 10-3a
I I I 10-4
I I I 2-8a
I I I 10-5b
I I I 7-35
I I I 7-36
I I I 7-37
I I I 5-7
I V 15-4
I I 4-41

SX-5 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

F$xxyy series

FDAT$A

FEDT$A

FIL$DL
FILL$A
FINFO$

FNCHK$

FORCEW

FRE$RA

FSUB$A
FTIM$A

FORTRAN compiler floating-point
f u n c t i o n s .

Convert the DATMOD field returned by
RDEN$$ to DAY MON DD YYYY.

Convert the DATMOD field returned by
RDEN$$ to DAY DD MON YYYY.

Delete a file identified by a pathname.
Fill a string with a character.
Return information about a specified

fi l e u n i t .
Verify a supplied string as a valid

fi l e n a m e .
Force PRIMOS to write modified records

to disk.
De-allocate space for EPF function

re turn in format ion .
Fill a substring with a given character.
Convert the TIMMOD field returned by

REDN$$.

B-8

IV 14-10

IV 14-12

I I 4-43
IV 10-6
I I 4-45

I I 4-49

I I 4-51

I I I 4-23

I V 10-7
I V 14-14

G$METR
GCHAR
GCHR$A
GEND$A
GEN$PW
GETERR
GETID$

GINFO
GPAS$$

GPATH$

GSNAM$
GT$PAR
GTROB$

GV$GET
GV$SET

Return system metering information.
Get a character from an array.
Get a character from a packed string.
Position to end of file.
Generate a login validation password.
Return ERRVEC contents.
Obtain the user-id and the groups to

which it belongs.
Return PRIMOS II information.
Obtain the passwords of a subdirectory

of the current directory.
Return the pathname of a specified

unit, attach point, or segment.
Return current PRIMOS system name.
Parse character string into tokens.
Find out whether current attach point

is on a robust partition.
Retrieve the value of a global variable
Set the value of a global variable.

I l l 2-63
I I I 6-25
IV 10-9
IV 15-5
I I I 2-26a
I I I 10-6
I I 2-21

I I I 2-10
I I 2-23

I I 4 - 5 3

I I I 2-12
I I I 6-27
I I 3-18

I I 6-12
I I 6-14

H$xy series FORTRAN compiler complex number storage. I B-5
H E A P H e a p s o r t . I V 1 7 - 5 1

First Edition, Update 2 SX-6

INDEX BY NAME

I$AA01
I$AA12

I$AC03
I$AC0 9
I$AC15

I$AD07
I$AM05
I$AM10
I$AM11
I$AM13
I$AP02
I$BD07
I$BM05
I$BM10
ICE$
IDCHK$
IMADD
IMADJ
IMCOF
IMCON
IMDET
IMIDN
IMMLT
IMSCL
IMSUB
IMTRN
IN$LO

INSERT
IOA$
IOA$ER

IOA$RS
IOCS$F
IOCS$G
ISACL$

IS$AB
IS$AS
IS$CE
IS$FB
IS$GE
IS$GRQ
IS$GRS
IS$GSA
IS$GSO

IS$GSS
IS$RM
IS$RS
IS$SM
IS$STA

R e a d A S C I I f r o m t e r m i n a l . I V 6 - 8
Read ASCII from terminal or input stream IV 6-10

by REDN$$.
I n p u t f r o m p a r a l l e l c a r d r e a d e r . I V 7 - 2 2
I n p u t f r o m s e r i a l c a r d r e a d e r . I V 7 - 2 4
Read and print card from parallel card IV 7-2 6

r e a d e r.
R e a d A S C I I f r o m d i s k . I V 5 - 4
R e a d A S C I I f r o m 9 - t r a c k t a p e . I V E - 7
R e a d A S C I I f r o m 7 - t r a c k t a p e . I V E - 7
R e a d B C D f r o m 7 - t r a c k t a p e . I V E - 7
R e a d E B C D I C f r o m 9 - t r a c k t a p e . I V E - 7
R e a d p a p e r t a p e (A S C I I) . I V 6 - 1 3
R e a d b i n a r y f r o m d i s k . I V 5 - 8
R e a d b i n a r y f r o m 9 - t r a c k . I V E - 7
R e a d b i n a r y f r o m 7 - t r a c k . I V E - 7
I n i t i a l i z e t h e c o m m a n d e n v i r o n m e n t . I l l 5 - 8
V a l i d a t e a n a m e . I l l 2 - 2 7
M a t r i x a d d i t i o n (i n t e g e r) . I V 1 8 - 9
C a l c u l a t e a d j o i n t m a t r i x (i n t e g e r) . I V 1 8 - 11
C a l c u l a t e s i g n e d c o f a c t o r (i n t e g e r) . I V 1 8 - 1 3
Set matrix to constant matrix (integer). IV 18-16
Calcu la te mat r ix determinant (in teger) . IV 18-18
Set matrix to identity matrix (integer). IV 18-20
M a t r i x m u l t i p l i c a t i o n (i n t e g e r) . I V 1 8 - 2 4
M u l t i p l y m a t r i x b y s c a l a r (i n t e g e r) . I V 1 8 - 2 6
M a t r i x s u b t r a c t i o n (i n t e g e r) . I V 1 8 - 2 8
C a l c u l a t e t r a n s p o s e m a t r i x (i n t e g e r) . I V 1 8 - 3 0
De te rm ine i f a f o r ced l ogou t i s i n I I I 2 -28

p r o g r e s s .
I n s e r t i o n s o r t . I V 1 7 - 5 2
P r o v i d e f r e e - f o r m a t o u t p u t . I l l 3 - 3 2
Prov ide f ree - fo rma t ou tpu t , f o r e r ro r I I I 3 -38

messages.
Perform free-format output to a buffer. I l l 6-32
F r e e l o g i c a l u n i t . I V 3 - 4
G e t l o g i c a l u n i t . I V 3 - 2
Determine whether an ob jec t is ACL- I I 2 -25

p r o t e c t e d .
A l l o c a t e a n I S C m e s s a g e b u f f e r . V 1 0 - 5
A c c e p t a n I S C s e s s i o n . V 8 - 9
C l e a r a n I S C s e s s i o n e x c e p t i o n . V 1 1 - 7
F r e e a n I S C m e s s a g e b u f f e r . V 1 0 - 7
G e t a n I S C s e s s i o n e x c e p t i o n . V 1 1 - 5
G e t a n I S C s e s s i o n r e q u e s t . V 8 - 6
Get an ISC session request response. V 8-12
G e t I S C s e s s i o n a t t r i b u t e s . V 1 4 - 4
Ge t l i s t o f ISC sess i ons owned by V 14 -2

th is se rve r.
G e t I S C s e s s i o n s t a t u s i n f o r m a t i o n . V 1 4 - 7
R e c e i v e a n I S C m e s s a g e . V 1 0 - 1 2
R e q u e s t a n I S C s e s s i o n . V 8 - 3
S e n d a n I S C m e s s a g e . V 1 0 - 9
G e t I S C c u r r e n t s e s s i o n s t a t i s t i c s . V 1 4 - 1 0

SX-7 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

IS$TS
ISN$C
ISN$L
ISN$RC

ISN$UC

ISREM$

JSTR$A

Terminate an ISC session.
Catalog ISC server's Low Level Name.
Look up ISC server's Low Level Name.
Recatalog ISC server's Low Level

Name File.
Uncatalog (delete) ISC server's

Low Level Name.
Determine whether an open file system

object is local or remote.
L e f t - j u s t i f y, r i g h t - j u s t i f y, o r c e n t e r

a str ing.

11-3
V 7-5
V 7-7
V 7-8

V 7-9

I I 4-56

I V 10-10

KLM$IF Enable a program to obtain serializa
tion data from a specified file.

I l l 5 - 8 a

L$xy series FORTRAN compiler complex number loading,
LD ISK$ Re tu rn i n fo rma t i on on t he sys tem 's l i s t

of logical disks.
L I M I T $ S e t a n d r e a d v a r i o u s t i m e r s .
L INEQ So lve a sys tem o f l i nea r equa t ions

(s ing le p rec is ion) .
LIST$CMD Return a list of commands valid at

mini-command level.
LN$SET Modi fy user 's search ru les to permi t

dynamic linking to EPF library.
L O G O $ $ L o g o u t a u s e r.
LON$CN Sw i t ch l ogou t no t i fi ca t i on on o r o f f .
L O N $ R R e a d l o g o u t n o t i fi c a t i o n i n f o r m a t i o n .
L O V $ S W I n d i c a t e i f t h e L o g i n - o v e r - l o g i n

funct ion is current ly permit ted.
LSTR$A Loca te one s t r i ng w i t h i n ano the r.
LSUB$A Loca te one subs t r i ng w i th in ano the r.
LUDEV$ Return a l ist of devices that a user

can access.
LUDSK$ List the disks a given user is using.
LV$GET Retrieve the value of a CPL local

v a r i a b l e .
LV$SET Set the value of a CPL local variable.

B-5
I I 4-58

I I I 8-36
I V 18-7

I I 6-16

I I 5-26

I I I 2-29
I I I 5-20
I I I 5-21
I I I 2-13

I V 10-12
I V 10-14
I I I 2-31

I I 4-61
I I 6-18

I I 6-20

M$xy series FORTRAN compiler multiplication
r o u t i n e s .

M A D D M a t r i x a d d i t i o n (s i n g l e p r e c i s i o n) .
M A D J C a l c u l a t e a d j o i n t m a t r i x (s i n g l e

p r e c i s i o n) .
MCHR$A Move a character from one packed string IV

to another.
M C O F C a l c u l a t e s i g n e d c o f a c t o r (s i n g l e

p r e c i s i o n) .

B-l

I V 18--9
I V 18--11

I V 10--16

I V 18--13

First Edition, Update 2 SX-8

INDEX BY NAME

MCON

MDET

MGSET$
MIDN

MINV

MKLB$F

MKON$F
MKON$P

MKONU$

MM$MLPA

MM$MLPU

MMLT

MOVEW$
MRG1$S
MRG2$
MRG3$S
MSCL
MSG$ST
MSTR$A
MSUB
MSUB$A
MTRN

Set matrix to constant matrix (single
p r e c i s i o n) .

Calculate matrix determinant (single
p r e c i s i o n) .

Set the receiving state for messages.
Set matrix to identity matrix (single

p r e c i s i o n) .
Calculate inverted matr ix (single

p r e c i s i o n) .
Convert FORTRAN statement label to

PL/I format.
Create an on-unit (for FTN users).
Create an on-unit (for any language

except FTN).
Create an on-unit (for PMA and PL/I

u s e r s) .
Make the last page of a segment

a v a i l a b l e .
Make the last page of a segment

u n a v a i l a b l e .
Ma t r i x mu l t i p l i ca t i on (s i ng le

p r e c i s i o n) .
Move a block of memory.
Merge sorted files.
Return next merged record.
Close merged input files.
Matr ix addi t ion (s ing le prec is ion) .
Return the receiving state of a user.
Move one string to another.
Mat r ix subt rac t ion (s ing le prec is ion) .
Move one substring to another.
Calculate transpose matrix (single

p r e c i s i o n) .

I V 18-16

I V 18-18

I I I 9-5
I V 18-20

I V 18-22

I I I 7-20

I I I 7-21
I I I 7-23

I I I 7-25

I I I 4-4a

I I I 4-4b

I V 18-24

I I I 6-34
I V 17-33
I V 17-37
I V 17-38
I V 18-26
I I I 9-3
I V 10-18
I V 18-28
I V 10-20
I V 18-30

N$xy se r ies FORTRAN comp i le r nega t ion func t ions . I B -5
N A M E Q $ C o m p a r e t w o c h a r a c t e r s t r i n g s . I l l 6 - 3 5
N L E N $ A D e t e r m i n e t h e o p e r a t i o n a l l e n g t h o f a I V 1 0 - 2 2

s t r i n g .
N T $ L T S R e t u r n c h a r a c t e r i s t i c s o f P R I M O S I V 8 - 3 6

network terminal service l ine.

O$AA01

O$AC03
0$AC15
O$AD07
O$AD08
0$ALxx

O$AL04

Wr i te ASCI I to te rmina l o r command IV 6-6
stream.

Parallel interface to card punch.
Parallel interface punch and print.
Write compressed ASCII to disk.
Write ASCII uncompressed to disk.
Interface to various pr inter

c o n t r o l l e r s .
C e n t r o n i c s l i n e p r i n t e r . I V 7 - 3

I V 7-31
I V 7-32
I V E-2
I V 5-10
I V 7-1

SX-9 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

O$AL0 6
0$AL14
O$AM05
O$AM10
0$AM11
0$AM13
O$BD07
O$BM05
O$BMl0
O$BP02
OPEN$A
OPNP$A
OPNV$A

OPSR$

OPSRS$

OPVP$A

OVERFL

Parallel interface to MPC line printer
Ve rsa te c p r i n t e r / p l o t t e r i n t e r f a ce .
Write ASCII to 9-track tape.
Write ASCII to 7-track tape.
Write BCD to 7-track tape.
Write EBCDIC to 9-track tape.
Write binary to disk.
Write binary to 9-track tape.
Write binary to 7-track tape.
Punch paper tape (binary).
Open supplied filename.
Read filename and open.
Open filename with verification and

d e l a y.
Locate a file using a search list and

open the file.
Locate a file using a search list and

a list of suffixes.
Read filename and open, or verify and

d e l a y.
Check if an overflow condition has

occur red .

IV 7-3
IV 7-13
IV E-7
IV E-7
IV E-7
I V E-7
I V 5-6
I V E-7
I V E-7
IV 6-15
IV 15-6
IV 15-8
IV 15-10

I I 7-4

I I 7-10

IV 15-13

I I I 10-7

P U B

P U N

PlOB

PlOU

PA$DEL
PA$LST

PA$SET
PAR$RV

PERM
PHANT$
PHNTM$
PL1$NL
POSN$A
PRERR
PRI$RV

PRJID$
PRWF$$

PTIME$

PWCHK$

Input character from paper tape reader
to Register A.

Input character from paper tape to
v a r i a b l e .

Output character from Register A to
paper-tape punch.

Output character from variable to
paper-tape punch.

Remove an object's priority access.
Obtain the contents of an object's

pr ior i ty ACL.
Set priority access on an object.
Return a logical value indicating ACL

and quota support.
Generate matrix permutations.
Start a phantom process.
Start up a phantom process.
Perform a nonlocal GOTO.
P o s i t i o n fi l e .
Print an error message.
Return operating system revision

number.
Return the user's project identifier.
Read, write, position, or truncate a

fi l e .
Return amount of CPU time used since

l o g i n .
Validate syntax of a password.

IV 6-17

IV 6-19

IV 6-18

IV 6-20

I I 2-27
I I 2-28

I I 2-30
I I 4-63

IV 18-32
I I I 10-8
I I I 5-23
I I I 7-27
IV 15-17
I I I 10-9
I I I 2-15

I I I 2-34
I I 4-65

I I I 2-35

I I I 2-36

First Edition, Update 2 SX-10

INDEX BY NAME

Q$READ

Q$SET

QUICK
QUIT$

Return directory quota and disk record II 4-74
usage information.

Set a quota on a subdirectory of the II 4-77
current directory.

P a r t i t i o n e x c h a n g e s o r t . I V 1 7 - 5 4
Determine if there are pending quits. Ill 3-62

RADXEX Radix exchange sort.
RAND$A Generate random number and update seed,

using 32-bit word size and the linear
congruential method.

RD$CE_JDP Return caller's current command
environment breadth.

RDASC Read ASCII from any device.
RDBIN Read binary from any device.
RDEN$$ Position in or read from a directory.
RDLIN$ Read a line of characters from a

compressed ASCII disk file.
RDTK$$ Parse a command line.
READY$ Display PRIMOS command prompt.
RECYCL Tell PRIMOS to cycle to the next user.
REMEPF$ Remove an EPF from a user's address

space.
REST$$ Restore an R-mode executable image.
RESU$$ Restore and resume an R-mode

executable image.
RLSE$S Get input records after SETU$.
RMSGD$ Receive a deferred message.
RNAM$A Prompt, read a pathname, and check

format.
RNDI$A Initialize random number generator seed.
RNUM$A Prompt and read a number (in any

format) .
RPL$ Replace one EPF runfile with another.
RPOS$A Return pos i t ion o f fi le .
RRECL Read d i sk reco rd .
RSEGAC$ Determine access to a segment.
RSTR$A Rotate str ing lef t or r ight .
RSUB$A Rotate substr ing left or r ight.
RTRN$S Get sorted records.
RVON$F Revert an on-unit (for FTN users).
RVONU$ Revert an on-unit (for any lanuage

except FTN).
R W N D $ A R e p o s i t i o n fi l e .

I V
I V

I I

17-55
13-2

6-22

I V 4-5
I V 4-9
I I A-9
I I 4-80

I I I 3-16
I I I 2-37
I I I 10-18
I I 5-22

I I I 5-13
I I I 5-15

I V 17-26
I I I 9-7
I V 11-2

I V 13-4
I V 11-4

I I 5-24
I V 15-18
I V 5-14
I I I 2-16
I V 10-23
I V 10-26
I V 17-28
I I I 7-28
I I I 7-29

IV 15-19

S$xy series FORTRAN compiler subtraction routines. I B-8
SATR$$ Set or modi fy an object 's a t t r ibutes. I I 4-82
SAVE$$ Save an R-mode execu tab le image . I l l 5 -17
S C H A R S t o r e a c h a r a c t e r i n t o a n a r r a y I I I 6 - 3 7

loca t i on .

SX-11 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

SEM$CL
SEM$DR
SEM$NF
SEM$OP
SEM$OU
SEM$TN
SEM$TS

SEM$TW

SEM$WT
SETRC$
SETU$S

SGD$DL
SGD$EX

SGD$OP
SGDR$$

SGNL$F
SHELL
SID$GT

SIGNL$
SIZE$
SLEEP$

SLEP$I
SLITE
SLITET
SMSG$
SNCHK$

SP$REQ
SPAS$$

SPOOL$
SR$ABSDS

SR$ADDB

SR$ADDE

SR$CREAT
SR$DEL
SR$DSABL

SR$ENABL
SR$EXSTR

Release (close) a named semaphore.
Drain a semaphore.
Notify a semaphore.
Open a set of named semaphores.
Open a set of named semaphores.
Periodically notify a semaphore.
Return number of processes waiting on

a semaphore.
Wait on a specified named semaphore,

with t imeout.
Wait on a semaphore.
Record command error status.
Prepare sort table and buffers for

CMBN$.
Delete a segment directory.
Find out if there is a valid entry at

the current position within the segment
directory on a specified unit.

Open a segment directory entry.
Position, read, or modify a segment

d i r e c t o r y .
Signal a condition.
Diminishing increment sort.
Return user number of initiating

process.
Signal a condition.
Return the size of a file system entry.
Suspend a process for a specified

i n t e r v a l .
Suspend a process (interruptible).
Set the sense light on or off.
Test sense light settings.
Send an interuser message.
Check validity of system name passed

to i t .
Insert a file into the spool queue.
Set the owner and nonowner passwords on

an object.
Insert a file in spooler queue.
Disable optional rules enabled by
SR$ENABL.
Add a rule to the start of a search

list or before a specified rule within
t h e l i s t .

Add a rule to the end of a search
list or after a specified rule within
t h e l i s t .

Create a search list.
Delete a search list.
Disable an optional search rule enabled

by SR$ENABL.
Enable an optional search rule.
Determine if a search rule exists.

I l l 8--17
I I I 8--19
I I I 8--21
I I I 8--23
I I I 8--23
I I I 8--27
I I I 8--29

I I I 8 - 3 1

I I I 8-33
I I I 5 -9
I V 17-22

I I 4-88
I I 4-90

I I 4-92
I I 4-94

I I I 7-30
I V 17-56
I I I 2-38

I I I 7-32
I I 4-100
I I I 8-39

I I I 8-40
I I I 10-12
I I I 10-13
I I I 9-9
I I I 2-18

I V 7-12c
I I 2-32

I V 7-9
I I 7-17

I I

I I

7-20

7-23

I I 7-26
I I 7-28
I I 7-30

I I 7-33
I I 7-36

First Edition, Update 2 SX-12

INDEX BY NAME

SR$FR_LS Free list structure space allocated by
SRSLIST or SR$READ.

SR$INIT Init ial ize al l search l ists to system
de fau l t s .

SR$LIST Return the names of all defined search
l i s t s .

SR$NEXTR Read the next rule from a search list.
SR$READ Read all of the rules in a search list.
SR$REM Remove a rule from a search list.
SR$SETL Set the locator pointer for a search

r u l e .
SR$SSR Set a search list via a user-defined

search rules file.
SRCH$$ Open, close, delete, or verify

existence of an object.
SRSFX$ Search for a file with a list of

possible suffixes.
SRS$GN Get server name.
SRS$GP Get process numbers of all processes

that have same server name.
SRS$LN List all active ISC server names.
SRTF$S Sor t severa l inpu t fi les .
SS$ERR Signal an error in a subsystem.
SSTR$A Sh i f t s t r ing le f t o r r igh t .
SSUB$A Shi f t substr ing le f t or r ight .
SSWTCH Test sense switch settings.
ST$SGS Return maximum number of static

segments.
STR$AL Allocate user-class dynamic memory.
STR$AP Allocate process-class dynamic memory.
STR$AS Allocate subsystem-class dynamic

memory.
STR$AU Allocate user-class dynamic memory.
STR$FP Free process-class dynamic memory.
STR$FR Free user-class dynamic memory.
STR$FS Free subsystem-class dynamic memory.
STR$FU Free user-class dynamic memory.
SUBSRT Sort file on ASCII key. (V-mode)
SUBSRT Sort file on ASCII key. (R-mode)
SUSR$ Test i f current user is supervisor.
SYN$CHCK Return total of notices or waiters

on a synchronizer.
SYN$CREA Create an event synchronizer.
SYN$DEST Destroy an event synchronizer.
SYN$GCHK Return total of notices or waiters

on an event group.
SYN$GCRE Create an event group.
SYN$GDST Destroy an event group.
SYN$GLST List total of groups in

server and their identifiers.
SYN$GRTR Retrieve a notice from a group.
SYN$GTWT Perform a timed wait on a group.
SYNSGWT Wait on an event group.
SYN$INFO Return information about a synchronizer.

I I

I I

I I

I I
I I
I I
I I

I I

I I

I I

7-40

7-42

7-44

7-48
7-53
7-57
7-60

7-63

4-103

4-112

V 7-10
V 7-11

V 7-13
I V 17-16
I I I 5 -11
I V 10-28
I V 10-30
I I I 10-14
I I I 4-26

I I I 4-5
I I I 4-7
I I I 4-8

I I I 4-10
I I I 4 -11
I I I 4-12
I I I 4-13
I I I 4-14
I V 17-10
I V 17-40
I I I 2-39
V 4-2

V 2-5
V 2-15
V 4-4

V 3-5
V 3-18
V 4-12

V 3-15
V 3-13
V 3-11
V 4-6

SX-13 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND IO

SYN$LIST List total of synchronizers in
server and their identifiers.

SYN$LSIG List total of synchronizers in
group and their identifiers.

SYN$MVTO Move a synchronizer into a group.
SYN$POST Post a notice on a synchronizer.
SYN$REMV Remove a synchronizer from a group.
SYN$RTRV Retrieve a notice

from an event synchronizer.
SYN$TMWT Perform a timed wait

on an event synchronizer.
SYN$WAIT Wait on an event synchronizer.
T$AMLC Communicate with AMLC driver.
T$CMPC Input from MPC card reader.
T$LMPC Move data to LPC line printer.
T$MT Raw data mover for tape.
T$PMPC Raw data mover for card reader.
T$SLC0 Communicate with SMLC driver.
T $ V G I n t e r f a c e t o Ve r s a t e c p r i n t e r.
TUB Read a charac ter (func t ion) f rom

PMA into Register A.
TUN Read a character (procedure) .
T10B Write one character from Register A.
T 1 0 U W r i t e o n e c h a r a c t e r .
TEMP$A Open a scratch file.
TEXTO$ Check filename for valid format.
TI$MSG Display standard message showing times

used.
TIDEC Read a decimal number.
TIHEX Read a hexadecimal number.
TIMDAT Return timing information and user

i d e n t i fi c a t i o n .
TIME$A Return time of day.
TIOCT Read an octal number.
TL$SGS Return highest segment number.
TMR$CANL Cancel a timer.
TMR$CREA Create a timer.
TMR$DEST Destroy a timer.
TMR$GINF Return permanent time information.
TMR$GTIM Return current system time.
TMR$GTMR Return information about a timer.
TMR$LIST List total number of timers in

server and their identifiers.
TMR$LOCALCONVERT

Convert local time to Universal Time.
TMR$SABS Set an absolute timer.
TMR$SINT Set an interval timer.
TMR$SREP Set a repetitive timer.
TMR$UNIVCONVERT

Convert Universal Time to local time.
TNCHK$ Verify a supplied string as a valid

pathname.
TNOU Wri te characters to terminal , fo l lowed

by NEWLINE.

4-10

4-8

V 3-7
V 2-7
V 3-9
V 2-13

V 2-11

V 2-9
IV 8-23
IV 7-28
IV 7-6
IV 7-37
IV 7-34
IV 8-3
IV 7-16
I I I 3-23

I I I 3-24
I I I 3-47
I I I 3-48
IV 15-20
I I I 10-15
I I I 2-40

I I I 3-26
I I I 3-27
I I I 2-42

IV 12-7
I I I 3-28
I I I 4-27
V 5-15
V 5-6
V 5-8
I I I 2-43b
I I I 2-43d
V 5-16
V 5-19

I I I 2-43e
V 5-9
V 5-11
V 5-13

I I I 2-43g
I I 4-118

I I I 3-40

First Edition, Update 2 SX-14

INDEX BY NAME

TNOUA
TODEC
TOHEX
TONL
TOOCT
TOVFD$
TREE$A
TRNC$A
TSCN$A
TSRC$$

TTY$IN

TTY$RS

TYPE$A

Write characters to terminal.
Write a signed decimal number.
Write a hexadecimal number.
Write a NEWLINE.
Write an octal number.
Write a decimal number, without spaces
Test for pathname.
Truncate a file.
Scan the file system tree structure.
Open, close, delete, or find a file

anywhere in the file structure.
Check for unread terminal input

c h a r a c t e r s .
Clear the terminal input and output

b u f f e r s .
Determine string type.

I l l 3-41
I I I 3-42
I I I 3-43
I I I 3-44
I I I 3-45
I I I 3-46
I V 10-32
I V 15-22
I V 15-23
I I A-17

I I I 3-63

I I I 3-65

IV 10-35

UID$BT
UID$CH

UNIT$A
UNITS$

UNO$GT
UPDATE

USER$
UTYPE$

Return unique bit string.
Convert UID$BT output into character

s t r i n g .
Check for file open.
Return caller's minimum and maximum

file unit numbers.
List users with same name as caller.
Update current directory (PRIMOS II

o n l y.
Return user number and count of users
Return user type of current process.

I l l 6-39
I I I 6-40

IV 15-28
I I 4-121

I I I 2-44
I I I 10-17

I I I 2-20
I I I 2-45

VALID$ Validate a name against composite
i d e n t i fi c a t i o n .

I l l 2 - 4 8

WILD$

WRASC
WRBIN
WRECL
WTLIN$

Return a logical value indicating
whether a wildcard name was matched.

Write ASCII.
Write binary to any output device.
Write disk record.
Write a line of characters to a

compressed ASCII file.

I I 4-122

I V 4-3
I V 4-7
I V 5-17
I I 4-124

YSNO$A Ask question and obtain a yes or no
answer.

I V 11-7

Z$80 Clear double-precision exponent B-5

SX-15 First Edition, Update 2

Index of
Subroutines
by Function

This index lists subroutines grouped by the general functions that
they perform. See the Index of Subroutines by Name to find a
particular subroutine's volume, chapter, and page number.

F X - 1 F i r s t E d i t i o n , U p d a t e 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

ACCESS CATEGORY

Add an object's name to an access category. AC$CAT

M o d i f y a n e x i s t i n g A C L o n a n o b j e c t . A C $ C H G

S e t a n o b j e c t ' s A C L t o t h a t o f i t s A C $ D F T
paren t d i rec to ry.

M a k e a n o b j e c t ' s A C L i d e n t i c a l t o t h a t A C $ L I K
of another object.

Ob ta in the con ten ts o f an ob jec t ' s ACL . AC$LST

Convert an object f rom ACL protect ion to AC$RVT
password protect ion.

S e t a s p e c i fi c A C L o n a n o b j e c t . A C $ S E T

Determine whether an object is accessib le CALAC$
for a given action.

D e l e t e a n a c c e s s c a t e g o r y . C A T $ D L

O b t a i n t h e u s e r - i d a n d t h e g r o u p s t o G E T I D $
which it belongs.

O b t a i n t h e p a s s w o r d s o f a s u b d i r e c t o r y G PA S $ $
of the current directory.

Determine whether an object is ACL-protected. ISACL$

R e m o v e a n o b j e c t ' s p r i o r i t y a c c e s s . P A $ D E L

O b t a i n t h e c o n t e n t s o f a n o b j e c t ' s P A $ L S T
pr ior i ty ACL.

S e t p r i o r i t y a c c e s s o n a n o b j e c t . P A $ S E T

Set the owner and nonowner passwords on SPAS$$
an object.

ARRAYS

Get a character from an array.

Store a character into an array location.

GCHAR

SCHAR

First Edition, Update 2 FX-2

INDEX BY FUNCTION

ASYNCHRONOUS LINES

Return asynchronous line .characteristics

Return asynchronous line number.

Set asynchronous l ine characterist ics.

ASSLST

ASSLIN

ASSSET

ATTACH POINTS

S e t t h e a t t a c h p o i n t t o a d i r e c t o r y A T $
specified by pathname.

Set the attach point to a specified top-level AT$ABS
d i rec to ry and par t i t i on .

Set the attach point to a specified top-level AT$ANY
directory on any part i t ion.

Set the attach point to the home directory. AT$HOM

Set the attach point to a specified top-level AT$LDEV
directory on a part i t ion identified by
logical disk number.

Set the attach point to the login directory. AT$OR

Set the attach point to a directory subordinate AT$REL
to the current directory.

Set the attach point to a specified directory ATCH$$
and optionally, make it the home directory.

BINARY SEARCH

Perform binary search in ordered table BIN$SR

BUFFER OUTPUT

Provide free-format output to a buffer IOA$RS

r
r

COMMAND ENVIRONMENT

Return caller's maximum command environment
b r e a d t h .

FX-3

CE$BRD

First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

Return caller's maximum command environment CE$DPT
depth .

Parse command arguments according to a character CL$PIX
string "picture" of the command line.

Invoke a command from a running program. CP$

Ret r ieve the va lue o f a g loba l var iab le . GV$GET

S e t t h e v a l u e o f a g l o b a l v a r i a b l e . G V $ S E T

Return a list of commands valid at mini-command LIST$CMD
l e v e l .

Retrieve the value of a CPL local variable. LV$GET

Se t t he va lue o f a CPL l oca l va r i ab le . LV$SET

Return breadth of caller's current command RD$CE_DP
envi ronment .

COMMAND LEVEL

Call a new command level after an error.

Call a new command level.

Return to PRIMOS.

Initialize the command environment.

Return ser ia l izat ion data.

Record command error status.

Signal an error in a subsystem.

CMLV$E

COMLV$

EXIT

ICE$

KLM$IF

SETRC$

SS$ERR

CONDITION MECHANISM

C o n t i n u e s c a n f o r o n - u n i t s . C N S I G $

Convert FORTRAN statement label to PL/I format. MKLB$F

C r e a t e a n o n - u n i t (f o r F T N u s e r s) . M K O N $ F

Create an on-unit (for any language except FTN). MKON$P

Create an on-unit (for PMA and PL/I users). MKONU$

First Edition, Update 2 FX-4

INDEX BY FUNCTION

Perform a nonlocal GOTO.

Revert an on-unit (for FTN users).

Revert an on-unit (for any language except
FTN) .

Signal a condition (for FTN users).

Signal a condition (for any language
except FTN.)

PL1$NL

RVON$F

RVONU$

SGNL$F

SIGNL$

CONTROLLERS, Asynchronous, Multi-Line

Communicate with SMLC driver.

Assign AMLC line.

Communicate with AMLC driver.

T$SLC0

ASNLN$

TSAMLC

DATA CONVERSION

Convert a string from lowercase to upper
case or uppercase to lowercase.

Convert ASCII number to binary.

Convert binary number to ASCII.

Make a number printable if possible.

Convert the DATMOD field (as returned by
RDEN$$) in format DAY, MON DD YYYY

Convert the DATMOD field (as returned by
RDEN$$) in format DAY, DD MON YYYY.

Convert the TIMMOD field (as returned by
RDEN$A).

CASE$A

CNVA$A

CNVB$A

ENCDSA

FDAT$A

FEDT$A

FTIM$A

DATE FORMATS

Convert binary date to quadseconds.

Convert ASCII date to binary format

Convert binary date to ISO format.

CV$DQS

CV$DTB

CV$FDA

FX-5 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

Convert binary date to "visual" format.

Convert quadsecond date to binary format.

CV$FDV

CV$QSD

DEVICES, Assigning or Attaching

Attach specified devices.

Provide or set aside available logical
fi l e u n i t .

Free a logical file unit number.

ATTDEV

IOCS$G

IOCS$F

DISK I/O

Read ASCII from disk.

Write binary to disk.

Read binary from disk.

Write ASCII to disk (fixed-length records)

Register disk format with driver.

I$AD07

O$BD07

I$BD07

O$AD08

DKGEO$

DRIVERS, Device-independent

W r i t e A S C I I d a t a . W R A S C

R e a d A S C I I d a t a . R D A S C

W r i t e b i n a r y d a t a . W R B I N

R e a d b i n a r y d a t a . R D B I N

Open PRIMOS file and perform other non-data CONTRL
transfer functions. (Primarily for IOCS
a p p l i c a t i o n s .)

ENCRYPTION, of Login Password

Encrypt login validation passwords. ENCRYPT$

First Edition, Update 2 FX-6

INDEX BY FUNCTION

EPFs

Allocating and De-Allocating Space For EPFs

A l l o c a t e s p a c e f o r E P F f u n c t i o n r e t u r n A L C S R A
i n f o r m a t i o n .

Allocate space and set value of EPF function ALS$RA
re tu rn i n fo rmat ion .

De-a l loca te space fo r EPF func t ion re tu rn FRE$RA
i n f o r m a t i o n .

Management of EPFs

Perform the linkage allocation phase for an EPF$ALLC
EPF.

Return the state of the command processing EPFSCPF
flags in an EPF.

Deactivate the most recent invocation of a EPF$DEL
specified EPF.

Per fo rm the l inkage in i t ia l i za t ion phase fo r EPF$INIT
an EPF.

In i t ia te the execut ion o f a p rogram EPF. EPF$INVK

Map the procedure images of an EPF file into EPFSMAP
virtual memory.

Combine funct ions of EPF$ALLC, EPF$MAP, EPFSRUN
EPFSINIT, and EPFSINVK.

Modify user's search rules to allow dynamic LN$SET
linking to a library EPF.

Remove an EPF from a user's address space. REMEPFS

R e p l a c e o n e E P F r u n fi l e w i t h a n o t h e r . R P L $

Information from In-Memory User Profile

Return maximum number of dynamic segments.

Return maximum number of static segments.

Return highest segment number.

DY$SGS

ST$SGS

TL$SGS

FX-7 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

ERROR HANDLING, I/O

Set ERRVEC and perform a return or display ERRSET
ERRVEC message before returning control
to system.

O b t a i n c o n t e n t s o f E R R V E C . G E T E R R

Display I/O error message on user terminal. PRERR

EVENT SYNCHRONIZERS AND EVENT GROUPS

Creating, Using, and Destroying Event Synchronizers

C r e a t e a n e v e n t s y n c h r o n i z e r . S Y N $ C R E A

Post a notice on an event synchronizer. SYN$POST

W a i t o n a n e v e n t s y n c h r o n i z e r . S Y N $ W A I T

Perform a timed wait on an event synchronizer. SYN$TMWT

Retrieve a notice from an event synchronizer. SYN$RTRV

D e s t r o y a n e v e n t s y n c h r o n i z e r . S Y N $ D E S T

Creating, Using, and Destroying Event Groups

C r e a t e a n e v e n t g r o u p . S Y N $ G C R E

Move an event synchronizer into an event group. SYN$MVTO

Remove an event synchronizer from an SYN$REMV
event group.

Cause a process to wait on an event group. SYN$GWT

Cause a process to perform a timed wait on SYN$GTWT
an event group.

Retrieve a notice from an event group. SYN$GRTR

D e s t r o y a n e v e n t g r o u p . S Y N $ G D S T

First Edition, Update 2 FX-8

INDEX BY FUNCTION

Information

Return number of notices or waiting processes. SYN$CHCK

Return number of notices on a group at one SYN$GCHK
or all priority levels; if all levels,
also return number of waiting processes.

Indicate whether synchronizer is in group; SYN$INFO
and if it is, return the group number,
priority level, and For Client Use field.

List the synchronizers in group and total SYN$LSIG
number.

List the synchronizers in server and total SYN$LIST
number.

List the groups in server and total number. SYN$GLST

EXECUTABLE IMAGES

Restore an R-mode executab le image. REST$$

Restore and resume an R-mode executable image. RESU$$

S a v e a n R - m o d e e x e c u t a b l e i m a g e . S AV E $ $

EXIT$ CONDITION

Disable signalling of EXIT$ condition.

Return state of EXIT$ signalling.

Enable signalling of EXIT$ condition.

EX$CLR

EX$RD

EX$SET

FILE SYSTEM OBJECTS

Append a specified suffix to a pathname.

Extend or truncate a CAM file.

Retrieve a CAM file's extent map from disk,

Set a CAM file's extent length value.

Change the open mode of an open file.

APSFX$

CF$EXT

CF$REM

CF$SME

CH$MOD

FX-9 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

Close a file by name and return a bit string CL$FNR
indicating closed units.

Close a file system object by pathname. CLO$FN

Close a file system object by file unit number. CLO$FU

C l o s e a fi l e . C L O S $ A

Change the name of an object in the current CNAM$$
d i r e c t o r y.

Create a new subdirectory in the current CREA$$
d i r e c t o r y.

C r e a t e a n e w p a s s w o r d d i r e c t o r y. C R E P W $

D e l e t e a fi l e . D E L E $ A

C r e a t e a n e w d i r e c t o r y . D I R $ C R

Search for specified types of entries in a DIR$LS
directory open on a file unit.

Read sequentially the entries of a directory DIR$RD
open on a file unit.

Re tu rn en t r i es mee t ing ca l l e r - spec ified D IR$SE
selection criteria in a directory open
on a file unit.

Return the contents of a named entry in ENT$RD
a directory open on a file unit.

Generate a filename based on another name. EQUALS

C h e c k f o r fi l e e x i s t e n c e . E X S T $ A

Return a file system object's entryname and EXTR$A
parent directory pathname.

Delete a file identified by a pathname. FIL$DL

Return information about a specified file unit. FINFO$

Verify a supplied string as a valid filename. FNCHK$

Force PRIMOS to write modified records to disk. FORCEW

P o s i t i o n t o e n d - o f - fi l e . G E N D $ A

Return the pathname of a specified unit, attach GPATH$
point, or segment.

First Edition, Update 2 FX-10

Tell whether the partition on which a file
exists is robust.

Determine whether an open file system object is
local or remote.

Return information on the system's list of
l og i ca l d i sks .

List the disks a given user is using.

Open supplied name.

Read name and open.

Open supplied name with verification and delay.

Read name and open with verification and delay.

Return a logical value indicating whether
a specified partition supports ACL
protection and quotas.

P o s i t i o n fi l e .

Read, write, position, or truncate a file.

Return directory quota and disk record
usage informat ion.

Set a quota on a subdirectory in the current
d i r e c t o r y .

Position in or read from a directory.

Read a line of characters from an ASCII
d i s k fi l e .

Return posi t ion of fi le.

Rewind fi le.

Set or modify an object's attributes
in i ts d i rectory entry.

Delete a segment directory entry.

Determine if a segment directory entry exists.

Open a segment directory entry.

Position in, read an entry in, or modify
the size of a segment directory.

INDEX BY FUNCTION

GTROB$

ISREM$

LDISK$

LUDSK$

OPEN$A

OPNP$A

OPNV$A

OPVP$A

PAR$RV

POSN$A

PRWF$$

Q$READ

QSSET

RDEN$$

RDLIN$

RPOS$A

RWND$A

SATR$$

SGDSDL

SGDSEX

SGDSOP

SGDR$$

FX-11 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

R e t u r n t h e s i z e o f a fi l e s y s t e m e n t r y. S I Z E $

Open, close, delete, change access, or verify SRCH$$
the existence of an object.

Search for a file with a l ist of possible SRSFX$
s u f fi x e s .

O p e n a s c r a t c h fi l e w i t h u n i q u e n a m e . T E M P $ 7

Verify a supplied string as a valid pathname. TNCHK$

T r u n c a t e fi l e . T R N C $ A

S c a n t h e fi l e s y s t e m s t r u c t u r e . T S C N $ A

Open a file anywhere in the PRIMOS file TSRC$$
s t r u c t u r e .

C h e c k f o r fi l e o p e n . U N I T $ A

Return the minimum and maximum file unit numbers UNITS$
currently in use by this user.

Return a logical value indicating whether a WILD$
wildcard name was matched.

Wr i t e a l i ne o f cha rac te rs t o a fi l e i n WTL IN$
compressed ASCII format.

ISC

Access Server Names

Catalog a server's Low Level Name.

Look up a server's Low Level Name.

Recatalog a server's Low Level Name.

Uncatalog a server's Low Level Name.

Get the server name of a process.

Get the process numbers of all processes
associated with the server name.

List the server names on your system.

ISN$C

ISN$L

ISN$RC

ISN$UC

SRS$GN

SRS$GP

SRS$LN

First Edition, Update 2 FX-12

INDEX BY FUNCTION

Establish an ISC Session

I n i t i a t o r r e q u e s t s t h e s e s s i o n . I S $ R S

R e c i p i e n t g e t s t h e s e s s i o n r e q u e s t . I S $ G R Q

R e c i p i e n t a c c e p t s t h e s e s s i o n . I S $ A S

Initiator gets the session request response. IS$GRS

ISC Message Exchange

Allocate a buffer for a message data part. IS$AB

F r e e a n a l l o c a t e d d a t a p a r t b u f f e r . I S $ F B

S e n d a m e s s a g e . I S $ S M

R e c e i v e a m e s s a g e . I S $ R M

Monitor ISC Message Exchange Session

Ge t sess ions owned by you r se rve r. IS$GSO

G e t s e s s i o n a t t r i b u t e s . I S S G S A

G e t s e s s i o n s t a t u s . I S $ G S S

G e t s t a t i s t i c s a b o u t a s e s s i o n . I S $ S T A

Terminate ISC Sessions or Respond to Exceptions

Terminate the caller's side of a session. IS$TS

G e t a n e x c e p t i o n . I S $ G E

C l e a r a n e x c e p t i o n . I S $ C E

KEYBOARD OR ASR READER

Input ASCII from terminal or ASR reader.

Perform same function as I$AA01
but also allow input from a cominput file

I$AA01

I$AA12

FX-13 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

MATRIX OPERATIONS

Generate permutations.

Generate combinations.

PERM

COMB

The following groups contain subroutines for single-precision,
double-precision, integer, and complex operations, respectively.
(* indicates that a subroutine is not available.)

Set matrix to identity matrix.

Set matrix to constant matrix.

Multiply matrix by a scalar.

Perform matrix addition.

Perform matrix subtraction.

Per form matr ix mul t ip l icat ion.

Calculate transpose matrix.

Calculate adjoint matr ix.

Calculate inverted matr ix.

Calculate signed cofactor.

Calculate determinant.

Solve a system of linear
e q u a t i o n s .

MIDN, DMIDN,
IMIDN, CMIDN

MCON, DMCON,
IMCON, CMCON

MSCL, DMSCL,
IMSCL, CMSCL

MADD, DMADD,
IMADD, CMADD

MSUB, DMSUB,
IMSUB, CMSUB

MMLT, DMMLT,
IMMLT, CMMLT

MTRN, DMTRN,
IMTRN, CMTRN

MADJ, DMADJ,
IMADJ, CMADJ

MINV, DMINV,
*, CMINV

MCOF, DMCOF,
IMCOF, CMCOF

MDET, DMDET,
IMDET, CMDET

LINEQ, DLINEQ,
*, CLINEQ

MEMORY

Allocate memory on the current stack,

Move a block of memory.

ALOCSS

MOVEWS

First Edition, Update 2 FX-14

INDEX BY FUNCTION

Make the last page of a segment available. MM$MLP

Make the last page of a segment unavailable. MM$MLP

A l l o c a t e u s e r - c l a s s d y n a m i c m e m o r y . S T R $ A L

A l l o c a t e p r o c e s s - c l a s s d y n a m i c m e m o r y. S T R $ A P

A l l o c a t e s u b s y s t e m - c l a s s d y n a m i c m e m o r y. S T R $ A S

A l l o c a t e u s e r - c l a s s d y n a m i c m e m o r y . S T R $ A U

F r e e p r o c e s s - c l a s s d y n a m i c m e m o r y . S T R $ F P

F r e e u s e r - c l a s s d y n a m i c m e m o r y . S T R $ F R

F r e e s u b s y s t e m - c l a s s d y n a m i c m e m o r y . S T R $ F S

F r e e u s e r - c l a s s d y n a m i c m e m o r y . S T R $ F U

MESSAGE FACILITY

Return the receiving state of a user.

Set the receiving state for messages.

Receive a deferred message.

Send an interuser message.

MSGSST

MGSET$

RMSGD$

SMSGS

NUMERIC CONVERSIONS

Conver t s t r ing (dec ima l) to 16-b i t in teger. CH$FX1

Conver t s t r ing (dec ima l) to 32-b i t in teger. CH$FX2

Convert string (hexadecimal) to 32-bit integer. CH$HX2

C o n v e r t s t r i n g (o c t a l) t o 3 2 - b i t i n t e g e r. C H $ 0 C 2

PAPER TAPE

Control functions for paper tape

Input ASCII from the high-speed
paper-tape reader.

C$P02

I$AP02

FX-15 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

O u t p u t b i n a r y d a t a t o t h e h i g h - s p e e d O $ B P 0 2
paper-tape punch.

I n p u t o n e c h a r a c t e r f r o m t h e P U B
high-speed paper-tape reader to Register A.

O u t p u t o n e c h a r a c t e r t o t h e P l O B
high-speed paper-tape punch from Register A.

I n p u t o n e c h a r a c t e r f r o m p a p e r t a p e , P U N
set high-order bit, ignore line feeds, send
a line feed when carriage return is read.

O u t p u t o n e c h a r a c t e r t o t h e P l O U
high-speed paper-tape punch.

PARSING

Parse a PRIMOS command line.

Parse character string into tokens

CMDL$A

GT$PAR

PERIPHERAL DEVICES

Line Pr in ters

C e n t r o n i c s L P . O $ A L 0 4

Para l le l in te r face to l ine p r in te r (MPC) . O$AL0 6

V e r s a t e c p r i n t e r . 0 $ A L 1 4

M o v e d a t a t o L P C l i n e p r i n t e r . T $ L M P C

A c c e s s a s p o o l e r q u e u e . S P O O L $

Place file in spool queue and perform SPOOLER SP$REQ
command functions.

P r i n t e r / P l o t t e r

Ve r s a t e c .

Ve r s a t e c .

0$AL14

T$VG

Card Reader/Punch

Input from parallel card reader, I$AC03

First Edition, Update 2 FX-16

INDEX BY FUNCTION

Input from serial card reader.

Read and print card from parallel interface
reader.

Input from MPC card reader.

Parallel interface to card punch.

Parallel interface to card punch and print
on card.

Raw data mover.

I$AC0 9

ISAC15

TSCMPC

O$AC03

0$AC15

T$PMPC

r Magnetic Tape

Write EBCDIC to 9-track.

Read EBCDIC from 9-track.

Raw data mover.

0$AM13

I$AMI3

T$MT

PHANTOM PROCESSES

Switch logout notification on or off

Read logout notification information

Start a phantom process.

LON$CN

LON$R

PHNTM$

PROCESS SUSPENSION

Suspend a process for a specified interval

Suspend a process (interruptible).

SLEEPS

SLEP$I

QUERY USER

Prompt and read a name.

Prompt and read a number (binary, decimal,
octal, or hexadecimal).

Ask question and obtain a YES or NO answer,

RNAMSA

RNUM$A

YSNO$A

FX-17 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

RANDOMIZING

Generate random number and update "seed," based RAND$A
upon a 32-bit word size and using the Linear
Congruential Method.

Initialize random number generator "seed." RNDI$A

SEARCH RULES

Locate a file using a search list and open OPSR$
the file. Create a file if the file
sought does not exist.

Locate a file using a search list and OPSRS$
a list of suffixes. Open the located file,
or create a file if the file sought does not
e x i s t .

Disable an optional search rule. Used SRSABSDS
to disable rules that have been enabled
using SR$ENABL.

Add a rule to the beginning of a search list SR$ADDB
or before a specified rule.

Add a rule to the end of a search list or SR$ADDE
after a specified rule.

C r e a t e a s e a r c h l i s t . S R $ C R E A T

D e l e t e a s e a r c h l i s t . S R $ D E L

Disable an optional search rule. Used to SR$DSABL
disable rules that have been enabled using
SR$ENABL.

Enable an optional search rule. Enabled rules SR$ENABL
can be disabled using SRSDSABL or SR$ABSDS.

D e t e r m i n e i f a s e a r c h r u l e e x i s t s . S R $ E X S T R

Free list structure space allocated by SR$LIST SR$FR_LS
or SR$READ.

Initialize all search lists to system defaults. SR$INIT

Return the names of all defined search lists. SRSLIST

Read the next rule from a search list. SR$NEXTR

Read all of the rules in a search list. SRSREAD

First Edition, Update 2 FX-18

INDEX BY FUNCTION

Remove a search rule from a search list. SRSREM

Set the locator pointer for a search rule. SR$SETL

Set a search list using a user-defined search SR$SSR
r u l e s fi l e .

SEMAPHORES

Release (close) a named semaphore.

Drain a semaphore.

Notify a semaphore.

Open a set of named semaphores.

Open a set of named semaphores.

Periodically notify a semaphore.

Return number of processes waiting on
a semaphore.

Wait on a specified named semaphore, with
t i m e o u t .

Wait on a semaphore.

SEMSCL

SEM$DR

SEM$NF

SEM$OP

SEMSOU

SEM$TN

SEM$TS

SEM$TW

SEM$WT

SORTING

Sort one file on ASCII key(s).

Sort (multiple key types) or merge sorted
fi l e s .

Merge sorted files.

Return next merged record to sort.

Close merged input files.

Sort one or several input files.

Prepare sort table and buffers.

Get input records.

Sort tables prepared by SETU$S.

SUBSRT

ASCS$$

MRG1$S

MRG2$S

MRG3$S

SRTF$S

SETUSS

RLSE$S

CMBNSS

FX-19 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

Get sorted records.

Close all sort units.

Heap sort.

Partition exchange sort.

Diminishing increment sort.

Radix exchange sort.

Insertion sort.

Bubble sort.

Binary search or build binary table

RTRN$S

CLNU$S

HEAP

QUICK

SHELL

RADXEX

INSERT

BUBBLE

BNSRCH

STRINGS

C o m p a r e t w o s t r i n g s f o r e q u a l i t y . C S T R $ A

Compare two subs t r i ngs fo r equa l i t y. CSUB$A

F i l l a s t r i n g w i t h a c h a r a c t e r . F I L L $ A

Fill a substring with a given character. FSUB$A

Get a character from a packed string. GCHR$A

L e f t - j u s t i f y, r i g h t - j u s t i f y, o r c e n t e r a J S T R $ A
string within a field.

L o c a t e o n e s t r i n g w i t h i n a n o t h e r . L S T R $ A

Loca te one subs t r i ng w i t h i n ano the r. LSUB$A

Move a character between packed strings. MCHR$A

M o v e o n e s t r i n g t o a n o t h e r . M S T R $ A

M o v e o n e s u b s t r i n g t o a n o t h e r . M S U B $ A

C o m p a r e t w o c h a r a c t e r s t r i n g s . N A M E Q S

Determine the operational length of a string. NLEN$A

R o t a t e s t r i n g l e f t o r r i g h t . R S T R $ A

R o t a t e s u b s t r i n g l e f t o r r i g h t . R S U B $ A

First Edition, Update 2 FX-20

INDEX BY FUNCTION

S h i f t s t r i n g l e f t o r r i g h t . S S T R S A

S h i f t s u b s t r i n g l e f t o r r i g h t . S S U B $ A

T e s t f o r p a t h n a m e . T R E E $ A

D e t e r m i n e s t r i n g t y p e . T Y P E $ A

R e t u r n u n i q u e b i t s t r i n g . U I D $ B T

Convert UID$BT output into character string. UID$CH

SYSTEM INFORMATION

General System Information

Return cold-start setting of ABBREV switch. ABSW

Determine if routine is dynamically accessible. CKDYN$

Return model number of Prime computer. CPUID$

R e t u r n c u r r e n t d a t e a n d t i m e . D A T E $

Return text representation of error code. ERTXT$

Return text representation of error code for ERSTEXT
specified PRIMOS subsystem.

R e t u r n P R I M O S I I i n f o r m a t i o n . G I N F O

Return current PRIMOS system name. GSNAM$

Return information on the system's list of LDISK$
logical disks.

I nd i ca te i f Log in -ove r - l og in pe rm i t t ed . LOV$SW

Return information about a PRIMOS line NT$LTS
used for LAN terminal service.

Return operating system revision number. PRI$RV

D e t e r m i n e a c c e s s t o a s e g m e n t . R S E G A C $

Check validity of system name passed to it. SNCHK$

Return user number and count of users. USERS

FX-21 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

System Time Information

Return CPU time since login.

Return today's date, American style.

Return today's date as day of year
(the Julian date).

Return disk time since login.

Return today 's date, European (military)
s t y l e .

Return time of day.

CTIM$A

DATE$A

DOFY$A

DTIM$A

EDAT$A

TIME$A

System Status and Metering Information

Return data about a disk partition.

Return data about a process's environment

Return data about file units.

Return a variety of metering information.

DSSAVL

DS$ENV

DS$UNI

G$METR

TIMERS

Set and read various timers.

Create a timer.

Destroy a timer.

Set an absolute timer.

Set an interval timer.

Set a repetitive timer.

Cancel a timer.

Return the timer type and information,

List the identifiers of the timers
within a server.

LIMIT$

TMR$CREA

TMR$DEST

TMR$SABS

TMRSSINT

TMRSSREP

TMR$CANL

TMR$GTMR

TMR$LIST

First Edition, Update 2 FX-22

INDEX BY FUNCTION

USER INFORMATION

Check that a process has a given amount of
t ime s l ice le f t .

Change login validation password.

Expand a line using abbreviations
p r e p r o c e s s o r.

Generate a new login validation password.

Validate a name.

Determine whether a forced logout is in
p r o g r e s s .

List the disks a given user is using.

Log out a user.

Return a list of devices that a user can
access.

Return the user 's project ident ifier.

Return amount of CPU time used since login.

Validate syntax of a password.

Display PRIMOS command prompt.

Return user number of initiating process.

Test whether current user is supervisor.

Display standard message showing times used,

Return timing information and user
i d e n t i fi c a t i o n .

Return permanent time information.

Return current system time.

Convert local time to Universal Time.

Convert Universal Time to local time.

List users with same name as caller.

Return user type of current process.

ASSUR$

CHGSPW

COM$AB

GEN$PW

IDCHKS

INSLO

LUDSK$

LOGO$$

LUDEVS

PRJIDS

PTIME$

PWCHK$

READY$

SIDSGT

SUSRS

TI$MSG

TIMDAT

TMRSGINF

TMRSGTIM

TMR$ LOCALCONVERT

TMRSUNIVCONVERT

UNOSGT

UTYPE$

FX-23 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

Validate a name against composite
i d e n t i fi c a t i o n .

VALID$

USER TERMINAL

Functions

Control functions for user terminal.

Output ASCII to the user
terminal or ASR punch.

Inhibit or enable CONTROL-P.

Get next character from terminal or
command file.

C$A01

O$AA01

BREAK$

C1IN

Get next character from command line
until carriage return.

Move characters from terminal or
command file to memory.

Read a line of text from the
terminal or from a command file.

C1IN$

CNIN$

COMANL

Supervise the editing of input from a terminal ECLSCC
or a command file (callable from C).

Supervise the editing of input from a terminal ECLSCL
or a command file.

Read or set erase and kill characters. ERKL$$

Output count characters to the user terminal TNOU
followed by a line feed and carriage return.

O u t p u t c o u n t c h a r a c t e r s t o t h e T N O U A
user terminal.

Output the 16-bit integer num
to the terminal.

TOVFDS

Read one character from the user
terminal into Register A.

Read one character from the user terminal

Write one character from Register A
to the user terminal.

TUB

TUN

T10B

First Edition, Update 2 FX-24

INDEX BY FUNCTION

O u t p u t c h a r t o t h e u s e r t e r m i n a l . T l O U
The data type must be a 16-bit integer in F77.

I n p u t d e c i m a l n u m b e r . T I D E C

I n p u t a n o c t a l n u m b e r . T I O C T

I n p u t a h e x a d e c i m a l n u m b e r . T I H E X

Output a six-character signed decimal number. TODEC

Output a six-character unsigned octal number. TOOCT

Output a four-character unsigned hexadecimal TOHEX
number.

Output Carr iage return and L ine feed. TONL

Input from User Terminal

Read a character.

Read a character.

Read a character, suppressing echo.

Read a line.

Read a specified number of characters

Read a line into a PRIMOS buffer.

Parse a command line.

Read a character (function).

Read a character (procedure).

Read a decimal number.

Read a hexadecimal number.

Read an octal number.

C1IN

C1IN$

C1NE$

CL$GET

CNIN$

COMANL

RDTKSS

TUB

TUN

TIDEC

TIHEX

TIOCT

FX-25 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

Output to User Terminal

Print a standard error message from PRIMOS or a ER$PRINT
PRIMOS subsystem.

P r i n t a s t a n d a r d e r r o r m e s s a g e . E R R P R S

P r o v i d e f r e e - f o r m a t o u t p u t . I O A $

Provide free-format output, for error messages. IOA$ER

Write characters to terminal, followed by TNOU
NEWLINE.

W r i t e c h a r a c t e r s t o t e r m i n a l . T N O U A

W r i t e a s i g n e d d e c i m a l n u m b e r . T O D E C

W r i t e a h e x a d e c i m a l n u m b e r . T O H E X

W r i t e a N E W L I N E . T O N L

W r i t e a n o c t a l n u m b e r . T O O C T

Write a decimal number, without spaces. TOVFD$

Wr i te one charac te r f rom Reg is te r A . T10B

W r i t e o n e c h a r a c t e r . T l O U

Control Output to User Terminal

I n h i b i t o r e n a b l e B R E A K f u n c t i o n . B R E A K $

Return information about command output CO$GET
set t ings .

Switch input between the terminal and a file. COMI$$

Switch output between the terminal and a file. COMO$$

Control the way PRIMOS treats the user terminal. DUPLXS

Read or set the erase and kill characters. ERKL$$

Determine i f there are pending qu i ts . QUITS

Check for unread terminal input characters. TTY$IN

Clear the terminal input and output buffers. TTY$RS

First Edition, Update 2 FX-26

Index

A

Addressing modes and libraries,
1-15

A l t e r n a t e r e t u r n (a l t r t n) ,
for FORTRAN users, B-l
restr ict ions on use, 2-3

APPLIB (R-mode application
l i b r a r y) , 9 - 1

A p p l i c a t i o n l i b r a r y,
and logical returned values,

9-2
conversion rout ines, 14-1 to

14-14
e r r o r c o n t r o l , 9 - 2
fi le system rout ines, 9-7
file system subrout ines, 15-1

to 15-28
i n t r o d u c t i o n t o , 9 - 1
l ibrary implementation and

p o l i c i e s , 9 - 5
open routines, 9-7
parsing routine, 16-1 to 16-9
randomizing routines, 13-1 to

13-4
routines as FORTRAN functions,

9-1

App l i ca t ion l i b ra ry (con t inued)
s t r ing manipu la t ion rout ines,

9-6
string routines, 10-1 to 10-36
subroutine naming conventions,

9-4
system information routines,

12-1 to 12-7
user query routines, 9-7, 11-1

to 11-9

Arguments for VSRTLI, 17-7

Assigning of AMLC lines, 8-20

Assigning synchronous
communicat ion l ines, 8-6

Assignment,
of devices, 3-1

Asynchronous contro l ler
sub rou t i nes , 8 -20

Asynchronous cont ro l le rs , 8-1

Asynchronous lines,
r e t r i e v i n g c h a r a c t e r i s t i c s o f ,

8-26
returning numbers of, 8-30

X - l First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

Asynchronous lines (continued)
setting characteristics of,

8-31

Binary data transfers, 4-2

Binary search and table-building,
17-45

B i t s ,
how to set in arguments, 1-13

Buffer length for Versatec
pr in te r /p lo t te rs , tab le ,
7-20

Building APPLIB/VAPPLB, 9-5

Card format for card reader
interfaces, 7-23, 7-25

Card processing subroutines,
7-21

Card reader/punch subroutines,
table, 7-2

Centronics line printer, 7-1

Change of mode commands, 7-6

Characteristics of FORTRAN
funct ions, 9-1

Cominput file, 6-10

Command line parsing, 16-1 to
16-9

CONIOC and FULCON tables, 3-8

CONIOC for R-mode and V-mode,
3-8

Control codes, 7-12e

Control modes, 7-4
(See also Vertical control

modes)

Control of AMLC data, 8-20

Controller ID for tape, 7-47

Controllers (See drivers)

Controllers, synchronous and
asynchronous, 8-1

Converting data types of
subroutine parameters, F-l

Cooperating merge routines in
VSRTLI, 17-32

Cooperating sort routines in
VSRTLI, 17-20

Current error handling routine,
A-2

Data and logical I/O functions,
4-2

Data Set Control Bits, table,
8-19

Data type declaration conversions
for a calling program, F-l

Data type equivalents for
non-PL/I program calls, F-l

Data type equivalents, table,
F-2, F-3

Data types,
in FORTRAN, 1-10
in PL/I, 1-8

DECLARE(DCL) statement, 1-4

CONTRL, keys and operating
effects, table, 4-13

First Edition, Update 2 X-2

INDEX

Device assignment,
permanent, 3-8
temporary, 3-1

Device-dependent drivers,
nonstandard disk, 5-1
paper tape, 6-1
user terminal, 6-1

Device-dependent IOCS drivers,
6-1

Device-independent drivers,
overview, 4-1

Disk subroutines, 5-1

Dr ivers,
AMLC, 8-1
device-dependent, 2-2, 5-1,

6-1
device-dependent, table, 2-5
device-independent, 2-2, 4-1
device-independent, table, 2-5
SMLC, 8-1

Error codes for languages, A-2

Error codes, location of, A-1

Error control for application
l i b r a r y, 9 - 2

Error handling for current
subroutines, A-1, A-2

Error handling, obsolete
procedures for, B-l

Error messages for obsolete tape
routines, E-6, E-8

Error recovery for tapes, 7-50

Error vector, system-wide, B-l

ERRVEC,
contents described, B-l, B-5
int roduced, B- l
subroutines for, B-l

File system routines in
appl icat ion l ibrary, 9-7

File unit allocation, 2-1

File units,
mapped to logical units, 2-10

File units and logical units,
table, 2-9

Format mode,
COBOL, 7-5, 7-11
FORTRAN, 7-5, 7-10

Forms control mode, 7-4, 7-14,
7-15

FORTRAN,
l ibrary rebuilding, 3-10

FORTRAN and case sensitivity,
1-5

FULCON and CONIOC tables, 3-8

Function,
defined, 1-1
without parameters, 1-6

Function calls,
in FORTRAN, 1-6
in PL/I, 1-6

Function declarations,
in FORTRAN, 1-6
in PL/I, 1-5

H

Header line control, 7-5, 7-14,
7-15

In-memory sorting routines,
17-45

X-3 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

Indicat ion and control
subrou t ines (obso le te) , D - l

Inpu t l i ne mod ifica t ion , 6 -9 ,
6-14

Instructions for magnetic tape
c o n t r o l l e r s , 7 - 3 8

IOCS (Input/Output Control
System),

de fau l t fi le un i ts fo r, 2 -1
d e fi n e d , 2 - 1
file unit assignment for, 2-1
introduction to, 2-1 to 2-4
levels of subrout ines, 2-2
log ica l un i ts fo r, 2 -1
maximum file units, 2-1
ove rv iew, figu re , 2 -7
parameters for subroutines,

2 -3
t a b l e s , 3 - 8

IOCS drivers, 4-1
dev ice-dependent , 6 -1

K

Language error codes, A-2

Libraries and addressing modes,
1-15

Line Configuration Control Block,
tables, 8-9 to 8-18

Line pr inter subrout ines, 7-1

Logical I/O functions and data,
4-2

Logical unit handlers, 3-1

Logica l un i ts ,
and file uni ts, table, 2-9
and physical devices, table,

2 -9
l i m i t s o f , 3 - 1
range for IOCS, 2-1, 2-3, 2-10

Logical values, returned size of,
1-6

LTS (LAN terminal service),
returning informat ion about,

8-34

Keys and operating effects for
CONTRL, table, 4-13

Keys for FORTRAN and non-FORTRAN
programs, 9-9

Keys for subroutines and for
FORTRAN functions, 9-4

Keys in VSRTLI, 17-5 to 17-7

Keys, overview, 1-14

Kill and erase characters,
l ine input , 6 -14
modifying the input line, 6-9

LAN terminal service (LTS),
returning information about,

8-34

Magnetic tape density selection,
7-46

Magnetic tape subroutines, 7-36
funct ions of , tab le, 7-36

Magnetic tape subroutines, table,
7-2

Mapping logical unit to file
u n i t , 3 - 1

MATHLB,
contents of, 18-1
data modes of subroutines in,

18-3
introduction to, 18-1 to 18-4
matr ices in , 18-3
naming conventions in, 18-3
parameters in, 18-3

First Edition, Update 2 X-4

INDEX

MATHLB (continued)
subrout ines in, table, 18-2
work arrays for, 18-4

M a t r i x ,
defined for MATHLB, 18-3

Modes and libraries, 1-15

Modifying CONIOC, 3-9

MPC line printer, 7-1

MSORTS,
d e fi n e d , 1 7 - 2
in-memory sorts in R-mode,

17-45

N

Naming conventions for
subrout ines , 9 -4 , 18-3

No-control mode, 7-5, 7-14, 7-15

Non-fi le -sys tem subrou t ines ,
d i s k , 5 - 1

Nonstandard disk format, 5-1

Nontag sorts for VSRTLI, 17-7

Obsolete disk subroutines, 5-12

Obsolete Magnetic Tape
Subrout ines , tab le , E-4

Obsolete Subroutines, table, E-1

Open file rout ines, table, 9-8

Open routines and file type
s e l e c t i o n , 9 - 7

Opt ional parameters, 1-11

Optional returned values, 1-12

Pagination control mode, 7-5,
7-14, 7-15

Parameters,
for IOCS subroutines, 2-3
in FORTRAN, 1-10
in PL/I , 1-8

Parameters common to sorting
r o u t i n e s , 1 7 - 4 5

Parameters for VSRTLI, 17-7

Parsing, command line, 16-1 to
16-9

Per iphe ra l -hand l i ng sub rou t i nes ,
t a b l e , 7 - 2

Permanent device assignment, 3-8

Physical Device Numbers,
t a b l e , 2 - 8

Physical devices,
and logical uni ts, table, 2-9
d e s c r i p t i o n s , 2 - 8

Phys ica l_dev ice ,
d e fi n e d , 2 - 4

P h y s i c a l _ u n i t , 2 - 4

PL/I and case insensit iv i ty, 1-4

P r i n t e r c o n t r o l , 7 - 4

P r i n t e r / p l o t t e r s u b r o u t i n e s ,
7-2, 7-12g

R

RATBL user terminal entry, 6-9,
6-11

RATBL, RBTBL, WATBL, and WBTBL,
3-8

Receive/transmit Enable Bits,
t a b l e , 8 - 1 9

X-5 First Edition, Update 2

SUBROUTINES REFERENCE IV: LIBRARIES AND I/O

Record types handled by VSRTLI,
17-4

Returned logical values, size of,
1-6

Sense switch setting (obsolete),
D - l

SMLC Controller Block, table,
8-7

Sort l ibraries,
defined, 17-1

Sort subroutines by function,
table, 17-3

Sort subroutines by library,
table, 17-4

Sorting routines in R-mode,
17-39

Spooling files, 7-9, 7-12c
control codes for, 7-12e

SRTLIB,
defined, 17-2

SRTLIB, R-mode subroutines,
17-39

Standard error codes,
defined, A-2
overview, 1-14

String routines in application
library, 10-1 to 10-36

Sub-unit (See Physical_unit)

Subroutine,
defined, 1-1
distinguished from function,

1-1

Subroutine calls,
in FORTRAN, 1-5
in PL/I, 1-4

Subroutine declarations,
in FORTRAN, 1-5
in PL/I, 1-4

Subroutine descriptions,
example of, figure, 1-3
format explained, 1-2
Usage section explained, 1-4

Subroutine libraries, 1-15

Subroutine parameters, 1-7

Subroutines,
for general terminal use,

table, 6-3
for printers/plotters (See

Printer/plotter subrout ines)
for user terminal and paper

tape, table, 6-2
overview, 1-1 to 1-15

Subroutines or functions for
appl icat ion l ibrary, 9-2

Summary of application library
contents, 9-3

Supervisor Call (SVC)
Ins t ruc t ions ,

and card reader, C-2
and operating system response,

C-2
classes, C-4
defined, C-l to C-7
numbers used by Primos, table,

C-5
to line printer, C-2

SVC Numbers Used By Primos,
table, C-5

Synchronous controllers, 8-1,
8-2

Subroutine as function,
d e fi n i t i o n , 1 - 1

Tag sorts for VSRTLI, 17-7

First Edition, Update 2 X-6

INDEX

Tape controllers and controller
ID, table, 7-37

Tape density selection, 7-46

Tape error recovery, 7-50

Temporary device assignment, 3-1

Terminal driver subroutines, 6-1

VSRTLI (continued)
types of sorts, 17-7
using open file units, 17-1

W

Wait semaphore for T$MT, 7-48

U

User query routines in
appl icat ion l ibrary, 9-7

User terminal subroutine in
RATBL, 6-9, 6-11

VAPPLB (V-mode application
l i b r a r y) , 9 - 1

Versatec pr inter/plot ter, 7-1,
7-13

Vertical control modes, 7-4,
7-14

VMSORT,
defined, 17-2

VMSORTS,
in-memory sorts in V-mode,

17-45

r

VSRTLI,
collating sequence, 17-5
cooperating merge subroutines,

17-32
cooperating sort subroutines,

17-20, 17-21
defined, 17-2
keys, 17-5 to 17-7
maximum record length, 17-5
naming conventions, 17-9
range of keys, 17-9
record types handled, 17-4
size of parameters, 17-7

X-7 First Edition, Update 2

SURVEY

READER RESPONSE FORM

DOC10083-1LA Subrou t ines Re fe rence Gu ide Vo lume IV

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

e x c e l l e n t v e r y g o o d g o o d f a i r p o o r

2. Please rate the document in the following areas:

R e a d a b i l i t y : h a r d t o u n d e r s t a n d a v e r a g e v e r y c l e a r

- t e c h n i c a l l e v e l : t o o s i m p l e a b o u t r i g h t t o o t e c h n i c a l

Te c h n i c a l a c c u r a c y : p o o r a v e r a g e v e r y g o o d

Examp les : too many _abou t r i gh t too few

I l l u s t r a t i o n s : t o o m a n y _ _ a b o u t r i g h t t o o f e w

3. What features did you find most useful?

4. What faults or errors gave you problems?

N a m e : P o s i t i o n :

Company:

Address:

.Zip:

First Class Permit #531 Natick. Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime
Attention: Technical Publications
Bldg 10
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Contents
	v
	vi
	vii
	About This Book
	ix
	x
	xi
	xii
	xiii
	xiv
	Part I
	Introduction
	Chapter 1
	Overview of Subroutines
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	Part II
	IOCS Library
	Chapter 2
	Introduction To IOCS
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	Chapter 3
	Device Assignment
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	Chapter 4
	Device-Independent Drivers
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	Chapter 5
	Disk Subroutines
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	Chapter 6
	Terminal Drivers and Terminal/Paper-Tape Subroutines
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	Chapter 7
	Other Peripheral Devices
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-12a
	7-12b
	7-12c
	7-12d
	7-12e
	7-12f
	7-12g
	7-12h
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	Part III
	SMLC/AMLC Subroutines
	Chapter 8
	Synchronous and Asynchronous Controllers
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	Part IV
	Application Library
	Chapter 9
	Introduction to Application Library
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	Chapter 10
	String Routines
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	Chapter 11
	User Query Routines
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	Chapter 12
	System Information Routines
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	Chapter 13
	Randomizing Routines
	13-1
	13-2
	13-3
	13-4
	Chapter 14
	Conversion Routines
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	14-10
	14-11
	14-12
	14-13
	14-14
	Chapter 15
	File System Routines
	15-1
	15-2
	15-3
	15-4
	15-5
	15-6
	15-7
	15-8
	15-9
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	Chapter 16
	Parsing Routine
	16-1
	16-2
	16-3
	16-4
	16-5
	16-6
	16-7
	16-8
	16-9
	Part V
	Sort Libraries and FORTRAN Matrix Library
	Chapter 17
	Sort Libraries
	17-1
	17-2
	17-3
	17-4
	17-5
	17-6
	17-7
	17-8
	17-9
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-29
	17-30
	17-31
	17-32
	17-33
	17-34
	17-35
	17-36
	17-37
	17-38
	17-39
	17-40
	17-41
	17-42
	17-43
	17-44
	17-45
	17-46
	17-47
	17-48
	17-49
	17-50
	17-51
	17-52
	17-53
	17-54
	17-55
	17-56
	Chapter 18
	FORTRAN Matrix Library (MATHLB)
	18-1
	18-2
	18-3
	18-4
	18-5
	18-6
	18-7
	18-8
	18-9
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	18-19
	18-20
	18-21
	18-22
	18-23
	18-24
	18-25
	18-26
	18-27
	18-28
	18-29
	18-30
	18-31
	18-32
	18-33
	Appendixes
	Appendix A
	Error Handling
	A-1
	A-2
	Appendix B
	Error Handling for I/O Subroutines
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	Appendix C
	SVC Information
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	Appendix D
	Obsolete Indication and Control Subroutines
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	Appendix E
	Other Obsolete Subroutines
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	E-7
	E-8
	Appendix F
	Data Type Equivalents
	F-1
	F-2
	F-3
	Indexes
	Index of Subroutines By Name
	SX-1
	SX-2
	SX-3
	SX-4
	SX-5
	SX-6
	SX-7
	SX-8
	SX-9
	SX-10
	SX-11
	SX-12
	SX-13
	SX-14
	SX-15
	Index of Subroutines By Function
	FX-1
	FX-2
	FX-3
	FX-4
	FX-5
	FX-6
	FX-7
	FX-8
	FX-9
	FX-10
	FX-11
	FX-12
	FX-13
	FX-14
	FX-15
	FX-16
	FX-17
	FX-18
	FX-19
	FX-20
	FX-21
	FX-22
	FX-23
	FX-24
	FX-25
	FX-26
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	Survey
	
	

